Text Generation
MLX
mistral
reach-vb HF staff commited on
Commit
a8d73c9
·
1 Parent(s): 8072674

Create README.md (#1)

Browse files

- Create README.md (5d76ba121f466b77533ddbb2ce7436dab0e10377)

Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - mistral
6
+ - mlx
7
+ inference: false
8
+ library_name: mlx
9
+ ---
10
+
11
+ # Mistral-7B-Instruct-v0.2 4 bit
12
+
13
+ The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
14
+
15
+ For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/).
16
+
17
+ This repository contains the weights in `npz` format suitable for use with Apple's MLX framework.
18
+
19
+ ## Use with MLX
20
+
21
+ ```bash
22
+ pip install mlx
23
+ pip install huggingface_hub hf_transfer
24
+ git clone https://github.com/ml-explore/mlx-examples.git
25
+
26
+ # Download model
27
+ export HF_HUB_ENABLE_HF_TRANSFER=1
28
+ huggingface-cli download --local-dir-use-symlinks False --local-dir mlx_model mlx-community/Mistral-7B-Instruct-v0.2
29
+
30
+ # Run example
31
+ python mlx-examples/mistral/mistral.py --prompt "My name is"
32
+ ```
33
+
34
+ The rest of this model card was copied from the [original repository](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
35
+
36
+ ## Instruction format
37
+
38
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
39
+
40
+ E.g.
41
+ ```
42
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
43
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
44
+ "[INST] Do you have mayonnaise recipes? [/INST]"
45
+ ```
46
+
47
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
48
+
49
+ ```python
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+
52
+ device = "cuda" # the device to load the model onto
53
+
54
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
55
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
56
+
57
+ messages = [
58
+ {"role": "user", "content": "What is your favourite condiment?"},
59
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
60
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
61
+ ]
62
+
63
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
64
+
65
+ model_inputs = encodeds.to(device)
66
+ model.to(device)
67
+
68
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
69
+ decoded = tokenizer.batch_decode(generated_ids)
70
+ print(decoded[0])
71
+ ```
72
+
73
+ ## Model Architecture
74
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
75
+ - Grouped-Query Attention
76
+ - Sliding-Window Attention
77
+ - Byte-fallback BPE tokenizer
78
+
79
+ ## Troubleshooting
80
+ - If you see the following error:
81
+ ```
82
+ Traceback (most recent call last):
83
+ File "", line 1, in
84
+ File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
85
+ config, kwargs = AutoConfig.from_pretrained(
86
+ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
87
+ config_class = CONFIG_MAPPING[config_dict["model_type"]]
88
+ File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
89
+ raise KeyError(key)
90
+ KeyError: 'mistral'
91
+ ```
92
+
93
+ Installing transformers from source should solve the issue
94
+ pip install git+https://github.com/huggingface/transformers
95
+
96
+ This should not be required after transformers-v4.33.4.
97
+
98
+ ## Limitations
99
+
100
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
101
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
102
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
103
+
104
+ ## The Mistral AI Team
105
+
106
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.