--- language: - en base_model: louisbrulenaudet/Pearl-3x7B library_name: mlx tags: - moe - frankenmoe - merge - mergekit - lazymergekit - dvilasuero/DistilabelBeagle14-7B - beowolx/CodeNinja-1.0-OpenChat-7B - WizardLM/WizardMath-7B-V1.1 - Maths - Code - Python pipeline_tag: text-generation license: apache-2.0 ---
# mlx-community/Pearl-3x7B This model was converted to MLX format from [`louisbrulenaudet/Pearl-3x7B`]() using mlx-vlm version **0.16.1**. Refer to the [original model card](louisbrulenaudet/Pearl-3x7B) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm python -m mlx_vlm.generate --model mlx-community/Pearl-3x7B --max-tokens 100 --temp 0.0 ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Pearl-3x7B") response = generate(model, tokenizer, prompt="hello", verbose=True) ``` ## Citing & Authors If you use this code in your research, please use the following BibTeX entry. ```BibTeX @misc{louisbrulenaudet2024, author = {Louis Brulé Naudet}, title = {Pearl-3x7B, an xtraordinary Mixture of Experts (MoE) for data science}, year = {2024} howpublished = {\url{https://huggingface.co/mlx-community/Pearl-3x7B}}, } ``` ## Feedback If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).