File size: 3,926 Bytes
1d8b6a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
language:
- zh
- en
license: gpl-3.0
tags:
- qwen
- uncensored
- mlx
base_model: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
datasets:
- NobodyExistsOnTheInternet/ToxicQAFinal
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Orion-zhen/dpo-toxic-zh
- unalignment/toxic-dpo-v0.2
- Crystalcareai/Intel-DPO-Pairs-Norefusals
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-7B-Instruct-Uncensored
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 72.04
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.36
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.58
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.07
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
name: Open LLM Leaderboard
---
# mlx-community/Qwen2.5-7B-Instruct-Uncensored-4bit
The Model [mlx-community/Qwen2.5-7B-Instruct-Uncensored-4bit](https://huggingface.co/mlx-community/Qwen2.5-7B-Instruct-Uncensored-4bit) was converted to MLX format from [Orion-zhen/Qwen2.5-7B-Instruct-Uncensored](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) using mlx-lm version **0.19.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-7B-Instruct-Uncensored-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|