File size: 1,339 Bytes
9b37a72
 
 
 
 
 
 
 
be9cfca
9b37a72
a51e9e7
9b37a72
be9cfca
 
9b37a72
 
 
 
 
 
 
 
 
120b5fe
9b37a72
dff94e5
9b37a72
 
dff94e5
 
 
 
9b37a72
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
language:
- ru
tags:
- mlx
base_model: t-tech/T-pro-it-1.0
---

# mlx-community/T-Pro-it-1.0-Q4-mlx

The Model [mlx-community/T-pro-it-1.0-Q4-mlx](https://huggingface.co/mlx-community/T-pro-it-1.0-Q4-mlx) was converted to MLX format from [t-tech/T-pro-it-1.0](https://huggingface.co/t-tech/T-pro-it-1.0) using mlx-lm version **0.19.2**.

All rights pertaining to the model are the exclusive property of [T-tech](https://huggingface.co/t-tech), while the model conversion tool is the property of [MLX Community](https://huggingface.co/mlx-community).

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/T-pro-it-1.0-Q4-mlx")

prompt="Напиши стих про машинное обучение"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [
        {"role": "system", "content": "Ты T-pro, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
        {"role": "user", "content": prompt}
    ]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```