File size: 1,339 Bytes
9b37a72 be9cfca 9b37a72 a51e9e7 9b37a72 be9cfca 9b37a72 120b5fe 9b37a72 dff94e5 9b37a72 dff94e5 9b37a72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
language:
- ru
tags:
- mlx
base_model: t-tech/T-pro-it-1.0
---
# mlx-community/T-Pro-it-1.0-Q4-mlx
The Model [mlx-community/T-pro-it-1.0-Q4-mlx](https://huggingface.co/mlx-community/T-pro-it-1.0-Q4-mlx) was converted to MLX format from [t-tech/T-pro-it-1.0](https://huggingface.co/t-tech/T-pro-it-1.0) using mlx-lm version **0.19.2**.
All rights pertaining to the model are the exclusive property of [T-tech](https://huggingface.co/t-tech), while the model conversion tool is the property of [MLX Community](https://huggingface.co/mlx-community).
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/T-pro-it-1.0-Q4-mlx")
prompt="Напиши стих про машинное обучение"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [
{"role": "system", "content": "Ты T-pro, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
{"role": "user", "content": prompt}
]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|