File size: 14,929 Bytes
50f8b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import time
from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
from typing import TYPE_CHECKING, Dict, Optional
from .inference._client import InferenceClient
from .inference._generated._async_client import AsyncInferenceClient
from .utils import logging, parse_datetime
if TYPE_CHECKING:
from .hf_api import HfApi
logger = logging.get_logger(__name__)
class InferenceEndpointError(Exception):
"""Generic exception when dealing with Inference Endpoints."""
class InferenceEndpointTimeoutError(InferenceEndpointError, TimeoutError):
"""Exception for timeouts while waiting for Inference Endpoint."""
class InferenceEndpointStatus(str, Enum):
PENDING = "pending"
INITIALIZING = "initializing"
UPDATING = "updating"
UPDATE_FAILED = "updateFailed"
RUNNING = "running"
PAUSED = "paused"
FAILED = "failed"
SCALED_TO_ZERO = "scaledToZero"
class InferenceEndpointType(str, Enum):
PUBlIC = "public"
PROTECTED = "protected"
PRIVATE = "private"
@dataclass
class InferenceEndpoint:
"""
Contains information about a deployed Inference Endpoint.
Args:
name (`str`):
The unique name of the Inference Endpoint.
namespace (`str`):
The namespace where the Inference Endpoint is located.
repository (`str`):
The name of the model repository deployed on this Inference Endpoint.
status ([`InferenceEndpointStatus`]):
The current status of the Inference Endpoint.
url (`str`, *optional*):
The URL of the Inference Endpoint, if available. Only a deployed Inference Endpoint will have a URL.
framework (`str`):
The machine learning framework used for the model.
revision (`str`):
The specific model revision deployed on the Inference Endpoint.
task (`str`):
The task associated with the deployed model.
created_at (`datetime.datetime`):
The timestamp when the Inference Endpoint was created.
updated_at (`datetime.datetime`):
The timestamp of the last update of the Inference Endpoint.
type ([`InferenceEndpointType`]):
The type of the Inference Endpoint (public, protected, private).
raw (`Dict`):
The raw dictionary data returned from the API.
token (`str`, *optional*):
Authentication token for the Inference Endpoint, if set when requesting the API.
Example:
```python
>>> from huggingface_hub import get_inference_endpoint
>>> endpoint = get_inference_endpoint("my-text-to-image")
>>> endpoint
InferenceEndpoint(name='my-text-to-image', ...)
# Get status
>>> endpoint.status
'running'
>>> endpoint.url
'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud'
# Run inference
>>> endpoint.client.text_to_image(...)
# Pause endpoint to save $$$
>>> endpoint.pause()
# ...
# Resume and wait for deployment
>>> endpoint.resume()
>>> endpoint.wait()
>>> endpoint.client.text_to_image(...)
```
"""
# Field in __repr__
name: str = field(init=False)
namespace: str
repository: str = field(init=False)
status: InferenceEndpointStatus = field(init=False)
url: Optional[str] = field(init=False)
# Other fields
framework: str = field(repr=False, init=False)
revision: str = field(repr=False, init=False)
task: str = field(repr=False, init=False)
created_at: datetime = field(repr=False, init=False)
updated_at: datetime = field(repr=False, init=False)
type: InferenceEndpointType = field(repr=False, init=False)
# Raw dict from the API
raw: Dict = field(repr=False)
# Internal fields
_token: Optional[str] = field(repr=False, compare=False)
_api: "HfApi" = field(repr=False, compare=False)
@classmethod
def from_raw(
cls, raw: Dict, namespace: str, token: Optional[str] = None, api: Optional["HfApi"] = None
) -> "InferenceEndpoint":
"""Initialize object from raw dictionary."""
if api is None:
from .hf_api import HfApi
api = HfApi()
if token is None:
token = api.token
# All other fields are populated in __post_init__
return cls(raw=raw, namespace=namespace, _token=token, _api=api)
def __post_init__(self) -> None:
"""Populate fields from raw dictionary."""
self._populate_from_raw()
@property
def client(self) -> InferenceClient:
"""Returns a client to make predictions on this Inference Endpoint.
Returns:
[`InferenceClient`]: an inference client pointing to the deployed endpoint.
Raises:
[`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed.
"""
if self.url is None:
raise InferenceEndpointError(
"Cannot create a client for this Inference Endpoint as it is not yet deployed. "
"Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again."
)
return InferenceClient(model=self.url, token=self._token)
@property
def async_client(self) -> AsyncInferenceClient:
"""Returns a client to make predictions on this Inference Endpoint.
Returns:
[`AsyncInferenceClient`]: an asyncio-compatible inference client pointing to the deployed endpoint.
Raises:
[`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed.
"""
if self.url is None:
raise InferenceEndpointError(
"Cannot create a client for this Inference Endpoint as it is not yet deployed. "
"Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again."
)
return AsyncInferenceClient(model=self.url, token=self._token)
def wait(self, timeout: Optional[int] = None, refresh_every: int = 5) -> "InferenceEndpoint":
"""Wait for the Inference Endpoint to be deployed.
Information from the server will be fetched every 1s. If the Inference Endpoint is not deployed after `timeout`
seconds, a [`InferenceEndpointTimeoutError`] will be raised. The [`InferenceEndpoint`] will be mutated in place with the latest
data.
Args:
timeout (`int`, *optional*):
The maximum time to wait for the Inference Endpoint to be deployed, in seconds. If `None`, will wait
indefinitely.
refresh_every (`int`, *optional*):
The time to wait between each fetch of the Inference Endpoint status, in seconds. Defaults to 5s.
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
if self.url is not None: # Means the endpoint is deployed
logger.info("Inference Endpoint is ready to be used.")
return self
if timeout is not None and timeout < 0:
raise ValueError("`timeout` cannot be negative.")
if refresh_every <= 0:
raise ValueError("`refresh_every` must be positive.")
start = time.time()
while True:
self.fetch()
if self.url is not None: # Means the endpoint is deployed
logger.info("Inference Endpoint is ready to be used.")
return self
if timeout is not None:
if time.time() - start > timeout:
raise InferenceEndpointTimeoutError("Timeout while waiting for Inference Endpoint to be deployed.")
logger.info(f"Inference Endpoint is not deployed yet ({self.status}). Waiting {refresh_every}s...")
time.sleep(refresh_every)
def fetch(self) -> "InferenceEndpoint":
"""Fetch latest information about the Inference Endpoint.
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
obj = self._api.get_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token)
self.raw = obj.raw
self._populate_from_raw()
return self
def update(
self,
*,
# Compute update
accelerator: Optional[str] = None,
instance_size: Optional[str] = None,
instance_type: Optional[str] = None,
min_replica: Optional[int] = None,
max_replica: Optional[int] = None,
# Model update
repository: Optional[str] = None,
framework: Optional[str] = None,
revision: Optional[str] = None,
task: Optional[str] = None,
) -> "InferenceEndpoint":
"""Update the Inference Endpoint.
This method allows the update of either the compute configuration, the deployed model, or both. All arguments are
optional but at least one must be provided.
This is an alias for [`HfApi.update_inference_endpoint`]. The current object is mutated in place with the
latest data from the server.
Args:
accelerator (`str`, *optional*):
The hardware accelerator to be used for inference (e.g. `"cpu"`).
instance_size (`str`, *optional*):
The size or type of the instance to be used for hosting the model (e.g. `"large"`).
instance_type (`str`, *optional*):
The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`).
min_replica (`int`, *optional*):
The minimum number of replicas (instances) to keep running for the Inference Endpoint.
max_replica (`int`, *optional*):
The maximum number of replicas (instances) to scale to for the Inference Endpoint.
repository (`str`, *optional*):
The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`).
framework (`str`, *optional*):
The machine learning framework used for the model (e.g. `"custom"`).
revision (`str`, *optional*):
The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`).
task (`str`, *optional*):
The task on which to deploy the model (e.g. `"text-classification"`).
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
# Make API call
obj = self._api.update_inference_endpoint(
name=self.name,
namespace=self.namespace,
accelerator=accelerator,
instance_size=instance_size,
instance_type=instance_type,
min_replica=min_replica,
max_replica=max_replica,
repository=repository,
framework=framework,
revision=revision,
task=task,
token=self._token,
)
# Mutate current object
self.raw = obj.raw
self._populate_from_raw()
return self
def pause(self) -> "InferenceEndpoint":
"""Pause the Inference Endpoint.
A paused Inference Endpoint will not be charged. It can be resumed at any time using [`InferenceEndpoint.resume`].
This is different than scaling the Inference Endpoint to zero with [`InferenceEndpoint.scale_to_zero`], which
would be automatically restarted when a request is made to it.
This is an alias for [`HfApi.pause_inference_endpoint`]. The current object is mutated in place with the
latest data from the server.
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
obj = self._api.pause_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token)
self.raw = obj.raw
self._populate_from_raw()
return self
def resume(self) -> "InferenceEndpoint":
"""Resume the Inference Endpoint.
This is an alias for [`HfApi.resume_inference_endpoint`]. The current object is mutated in place with the
latest data from the server.
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
obj = self._api.resume_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token)
self.raw = obj.raw
self._populate_from_raw()
return self
def scale_to_zero(self) -> "InferenceEndpoint":
"""Scale Inference Endpoint to zero.
An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a
cold start delay. This is different than pausing the Inference Endpoint with [`InferenceEndpoint.pause`], which
would require a manual resume with [`InferenceEndpoint.resume`].
This is an alias for [`HfApi.scale_to_zero_inference_endpoint`]. The current object is mutated in place with the
latest data from the server.
Returns:
[`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data.
"""
obj = self._api.scale_to_zero_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token)
self.raw = obj.raw
self._populate_from_raw()
return self
def delete(self) -> None:
"""Delete the Inference Endpoint.
This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable
to pause it with [`InferenceEndpoint.pause`] or scale it to zero with [`InferenceEndpoint.scale_to_zero`].
This is an alias for [`HfApi.delete_inference_endpoint`].
"""
self._api.delete_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token)
def _populate_from_raw(self) -> None:
"""Populate fields from raw dictionary.
Called in __post_init__ + each time the Inference Endpoint is updated.
"""
# Repr fields
self.name = self.raw["name"]
self.repository = self.raw["model"]["repository"]
self.status = self.raw["status"]["state"]
self.url = self.raw["status"].get("url")
# Other fields
self.framework = self.raw["model"]["framework"]
self.revision = self.raw["model"]["revision"]
self.task = self.raw["model"]["task"]
self.created_at = parse_datetime(self.raw["status"]["createdAt"])
self.updated_at = parse_datetime(self.raw["status"]["updatedAt"])
self.type = self.raw["type"]
|