File size: 16,676 Bytes
254a3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import json
import os
from pathlib import Path
from pickle import DEFAULT_PROTOCOL, PicklingError
from typing import Any, Dict, List, Optional, Union

from packaging import version

from huggingface_hub import snapshot_download
from huggingface_hub.constants import CONFIG_NAME
from huggingface_hub.hf_api import HfApi
from huggingface_hub.utils import (
    SoftTemporaryDirectory,
    get_fastai_version,
    get_fastcore_version,
    get_python_version,
)

from .utils import logging, validate_hf_hub_args
from .utils._runtime import _PY_VERSION  # noqa: F401 # for backward compatibility...


logger = logging.get_logger(__name__)


def _check_fastai_fastcore_versions(
    fastai_min_version: str = "2.4",
    fastcore_min_version: str = "1.3.27",
):
    """
    Checks that the installed fastai and fastcore versions are compatible for pickle serialization.

    Args:
        fastai_min_version (`str`, *optional*):
            The minimum fastai version supported.
        fastcore_min_version (`str`, *optional*):
            The minimum fastcore version supported.

    <Tip>
    Raises the following error:

        - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
          if the fastai or fastcore libraries are not available or are of an invalid version.

    </Tip>
    """

    if (get_fastcore_version() or get_fastai_version()) == "N/A":
        raise ImportError(
            f"fastai>={fastai_min_version} and fastcore>={fastcore_min_version} are"
            f" required. Currently using fastai=={get_fastai_version()} and"
            f" fastcore=={get_fastcore_version()}."
        )

    current_fastai_version = version.Version(get_fastai_version())
    current_fastcore_version = version.Version(get_fastcore_version())

    if current_fastai_version < version.Version(fastai_min_version):
        raise ImportError(
            "`push_to_hub_fastai` and `from_pretrained_fastai` require a"
            f" fastai>={fastai_min_version} version, but you are using fastai version"
            f" {get_fastai_version()} which is incompatible. Upgrade with `pip install"
            " fastai==2.5.6`."
        )

    if current_fastcore_version < version.Version(fastcore_min_version):
        raise ImportError(
            "`push_to_hub_fastai` and `from_pretrained_fastai` require a"
            f" fastcore>={fastcore_min_version} version, but you are using fastcore"
            f" version {get_fastcore_version()} which is incompatible. Upgrade with"
            " `pip install fastcore==1.3.27`."
        )


def _check_fastai_fastcore_pyproject_versions(
    storage_folder: str,
    fastai_min_version: str = "2.4",
    fastcore_min_version: str = "1.3.27",
):
    """
    Checks that the `pyproject.toml` file in the directory `storage_folder` has fastai and fastcore versions
    that are compatible with `from_pretrained_fastai` and `push_to_hub_fastai`. If `pyproject.toml` does not exist
    or does not contain versions for fastai and fastcore, then it logs a warning.

    Args:
        storage_folder (`str`):
            Folder to look for the `pyproject.toml` file.
        fastai_min_version (`str`, *optional*):
            The minimum fastai version supported.
        fastcore_min_version (`str`, *optional*):
            The minimum fastcore version supported.

    <Tip>
    Raises the following errors:

        - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
          if the `toml` module is not installed.
        - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
          if the `pyproject.toml` indicates a lower than minimum supported version of fastai or fastcore.

    </Tip>
    """

    try:
        import toml
    except ModuleNotFoundError:
        raise ImportError(
            "`push_to_hub_fastai` and `from_pretrained_fastai` require the toml module."
            " Install it with `pip install toml`."
        )

    # Checks that a `pyproject.toml`, with `build-system` and `requires` sections, exists in the repository. If so, get a list of required packages.
    if not os.path.isfile(f"{storage_folder}/pyproject.toml"):
        logger.warning(
            "There is no `pyproject.toml` in the repository that contains the fastai"
            " `Learner`. The `pyproject.toml` would allow us to verify that your fastai"
            " and fastcore versions are compatible with those of the model you want to"
            " load."
        )
        return
    pyproject_toml = toml.load(f"{storage_folder}/pyproject.toml")

    if "build-system" not in pyproject_toml.keys():
        logger.warning(
            "There is no `build-system` section in the pyproject.toml of the repository"
            " that contains the fastai `Learner`. The `build-system` would allow us to"
            " verify that your fastai and fastcore versions are compatible with those"
            " of the model you want to load."
        )
        return
    build_system_toml = pyproject_toml["build-system"]

    if "requires" not in build_system_toml.keys():
        logger.warning(
            "There is no `requires` section in the pyproject.toml of the repository"
            " that contains the fastai `Learner`. The `requires` would allow us to"
            " verify that your fastai and fastcore versions are compatible with those"
            " of the model you want to load."
        )
        return
    package_versions = build_system_toml["requires"]

    # Extracts contains fastai and fastcore versions from `pyproject.toml` if available.
    # If the package is specified but not the version (e.g. "fastai" instead of "fastai=2.4"), the default versions are the highest.
    fastai_packages = [pck for pck in package_versions if pck.startswith("fastai")]
    if len(fastai_packages) == 0:
        logger.warning("The repository does not have a fastai version specified in the `pyproject.toml`.")
    # fastai_version is an empty string if not specified
    else:
        fastai_version = str(fastai_packages[0]).partition("=")[2]
        if fastai_version != "" and version.Version(fastai_version) < version.Version(fastai_min_version):
            raise ImportError(
                "`from_pretrained_fastai` requires"
                f" fastai>={fastai_min_version} version but the model to load uses"
                f" {fastai_version} which is incompatible."
            )

    fastcore_packages = [pck for pck in package_versions if pck.startswith("fastcore")]
    if len(fastcore_packages) == 0:
        logger.warning("The repository does not have a fastcore version specified in the `pyproject.toml`.")
    # fastcore_version is an empty string if not specified
    else:
        fastcore_version = str(fastcore_packages[0]).partition("=")[2]
        if fastcore_version != "" and version.Version(fastcore_version) < version.Version(fastcore_min_version):
            raise ImportError(
                "`from_pretrained_fastai` requires"
                f" fastcore>={fastcore_min_version} version, but you are using fastcore"
                f" version {fastcore_version} which is incompatible."
            )


README_TEMPLATE = """---
tags:
- fastai
---

# Amazing!

🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!

# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!

2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).

3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!

Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.


---


# Model card

## Model description
More information needed

## Intended uses & limitations
More information needed

## Training and evaluation data
More information needed
"""

PYPROJECT_TEMPLATE = f"""[build-system]
requires = ["setuptools>=40.8.0", "wheel", "python={get_python_version()}", "fastai={get_fastai_version()}", "fastcore={get_fastcore_version()}"]
build-backend = "setuptools.build_meta:__legacy__"
"""


def _create_model_card(repo_dir: Path):
    """
    Creates a model card for the repository.

    Args:
        repo_dir (`Path`):
            Directory where model card is created.
    """
    readme_path = repo_dir / "README.md"

    if not readme_path.exists():
        with readme_path.open("w", encoding="utf-8") as f:
            f.write(README_TEMPLATE)


def _create_model_pyproject(repo_dir: Path):
    """
    Creates a `pyproject.toml` for the repository.

    Args:
        repo_dir (`Path`):
            Directory where `pyproject.toml` is created.
    """
    pyproject_path = repo_dir / "pyproject.toml"

    if not pyproject_path.exists():
        with pyproject_path.open("w", encoding="utf-8") as f:
            f.write(PYPROJECT_TEMPLATE)


def _save_pretrained_fastai(
    learner,
    save_directory: Union[str, Path],
    config: Optional[Dict[str, Any]] = None,
):
    """
    Saves a fastai learner to `save_directory` in pickle format using the default pickle protocol for the version of python used.

    Args:
        learner (`Learner`):
            The `fastai.Learner` you'd like to save.
        save_directory (`str` or `Path`):
            Specific directory in which you want to save the fastai learner.
        config (`dict`, *optional*):
            Configuration object. Will be uploaded as a .json file. Example: 'https://huggingface.co/espejelomar/fastai-pet-breeds-classification/blob/main/config.json'.

    <Tip>

    Raises the following error:

        - [`RuntimeError`](https://docs.python.org/3/library/exceptions.html#RuntimeError)
          if the config file provided is not a dictionary.

    </Tip>
    """
    _check_fastai_fastcore_versions()

    os.makedirs(save_directory, exist_ok=True)

    # if the user provides config then we update it with the fastai and fastcore versions in CONFIG_TEMPLATE.
    if config is not None:
        if not isinstance(config, dict):
            raise RuntimeError(f"Provided config should be a dict. Got: '{type(config)}'")
        path = os.path.join(save_directory, CONFIG_NAME)
        with open(path, "w") as f:
            json.dump(config, f)

    _create_model_card(Path(save_directory))
    _create_model_pyproject(Path(save_directory))

    # learner.export saves the model in `self.path`.
    learner.path = Path(save_directory)
    os.makedirs(save_directory, exist_ok=True)
    try:
        learner.export(
            fname="model.pkl",
            pickle_protocol=DEFAULT_PROTOCOL,
        )
    except PicklingError:
        raise PicklingError(
            "You are using a lambda function, i.e., an anonymous function. `pickle`"
            " cannot pickle function objects and requires that all functions have"
            " names. One possible solution is to name the function."
        )


@validate_hf_hub_args
def from_pretrained_fastai(
    repo_id: str,
    revision: Optional[str] = None,
):
    """
    Load pretrained fastai model from the Hub or from a local directory.

    Args:
        repo_id (`str`):
            The location where the pickled fastai.Learner is. It can be either of the two:
                - Hosted on the Hugging Face Hub. E.g.: 'espejelomar/fatai-pet-breeds-classification' or 'distilgpt2'.
                  You can add a `revision` by appending `@` at the end of `repo_id`. E.g.: `dbmdz/bert-base-german-cased@main`.
                  Revision is the specific model version to use. Since we use a git-based system for storing models and other
                  artifacts on the Hugging Face Hub, it can be a branch name, a tag name, or a commit id.
                - Hosted locally. `repo_id` would be a directory containing the pickle and a pyproject.toml
                  indicating the fastai and fastcore versions used to build the `fastai.Learner`. E.g.: `./my_model_directory/`.
        revision (`str`, *optional*):
            Revision at which the repo's files are downloaded. See documentation of `snapshot_download`.

    Returns:
        The `fastai.Learner` model in the `repo_id` repo.
    """
    _check_fastai_fastcore_versions()

    # Load the `repo_id` repo.
    # `snapshot_download` returns the folder where the model was stored.
    # `cache_dir` will be the default '/root/.cache/huggingface/hub'
    if not os.path.isdir(repo_id):
        storage_folder = snapshot_download(
            repo_id=repo_id,
            revision=revision,
            library_name="fastai",
            library_version=get_fastai_version(),
        )
    else:
        storage_folder = repo_id

    _check_fastai_fastcore_pyproject_versions(storage_folder)

    from fastai.learner import load_learner  # type: ignore

    return load_learner(os.path.join(storage_folder, "model.pkl"))


@validate_hf_hub_args
def push_to_hub_fastai(
    learner,
    *,
    repo_id: str,
    commit_message: str = "Push FastAI model using huggingface_hub.",
    private: bool = False,
    token: Optional[str] = None,
    config: Optional[dict] = None,
    branch: Optional[str] = None,
    create_pr: Optional[bool] = None,
    allow_patterns: Optional[Union[List[str], str]] = None,
    ignore_patterns: Optional[Union[List[str], str]] = None,
    delete_patterns: Optional[Union[List[str], str]] = None,
    api_endpoint: Optional[str] = None,
):
    """
    Upload learner checkpoint files to the Hub.

    Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
    `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
    details.

    Args:
        learner (`Learner`):
            The `fastai.Learner' you'd like to push to the Hub.
        repo_id (`str`):
            The repository id for your model in Hub in the format of "namespace/repo_name". The namespace can be your individual account or an organization to which you have write access (for example, 'stanfordnlp/stanza-de').
        commit_message (`str`, *optional*):
            Message to commit while pushing. Will default to :obj:`"add model"`.
        private (`bool`, *optional*, defaults to `False`):
            Whether or not the repository created should be private.
        token (`str`, *optional*):
            The Hugging Face account token to use as HTTP bearer authorization for remote files. If :obj:`None`, the token will be asked by a prompt.
        config (`dict`, *optional*):
            Configuration object to be saved alongside the model weights.
        branch (`str`, *optional*):
            The git branch on which to push the model. This defaults to
            the default branch as specified in your repository, which
            defaults to `"main"`.
        create_pr (`boolean`, *optional*):
            Whether or not to create a Pull Request from `branch` with that commit.
            Defaults to `False`.
        api_endpoint (`str`, *optional*):
            The API endpoint to use when pushing the model to the hub.
        allow_patterns (`List[str]` or `str`, *optional*):
            If provided, only files matching at least one pattern are pushed.
        ignore_patterns (`List[str]` or `str`, *optional*):
            If provided, files matching any of the patterns are not pushed.
        delete_patterns (`List[str]` or `str`, *optional*):
            If provided, remote files matching any of the patterns will be deleted from the repo.

    Returns:
        The url of the commit of your model in the given repository.

    <Tip>

    Raises the following error:

        - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
          if the user is not log on to the Hugging Face Hub.

    </Tip>
    """
    _check_fastai_fastcore_versions()
    api = HfApi(endpoint=api_endpoint)
    repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id

    # Push the files to the repo in a single commit
    with SoftTemporaryDirectory() as tmp:
        saved_path = Path(tmp) / repo_id
        _save_pretrained_fastai(learner, saved_path, config=config)
        return api.upload_folder(
            repo_id=repo_id,
            token=token,
            folder_path=saved_path,
            commit_message=commit_message,
            revision=branch,
            create_pr=create_pr,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            delete_patterns=delete_patterns,
        )