File size: 11,826 Bytes
42a2b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Copyright © 2023 Apple Inc.

import math

import mlx.core as mx
from mlx.nn.layers.base import Module


def _make_activation_module(f):
    def decorator(klass):
        klass.__doc__ = f.__doc__
        klass.__call__ = lambda self, x: f(x)
        return klass

    return decorator


def sigmoid(x):
    r"""Applies the element-wise function:

    .. math::
        \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
    """
    return mx.sigmoid(x)


def relu(x):
    r"""Applies the Rectified Linear Unit.

    Simply ``mx.maximum(x, 0)``.
    """
    return mx.maximum(x, 0)


def leaky_relu(x, negative_slope=0.01):
    r"""Applies the Leaky Rectified Linear Unit.

    Simply ``mx.maximum(negative_slope * x, x)``.
    """
    return mx.maximum(negative_slope * x, x)


def log_softmax(x, axis=-1):
    r"""Applies the Log Softmax function.

    Applies :math:`x + \log \sum_i e^{x_i}` element wise.
    """
    return x - mx.logsumexp(x, axis=axis, keepdims=True)


def elu(x, alpha=1.0):
    r"""Applies the Exponential Linear Unit.

    Simply ``mx.where(x > 0, x, alpha * (mx.exp(x) - 1))``.
    """
    return mx.where(x > 0, x, alpha * (mx.exp(x) - 1))


def relu6(x):
    r"""Applies the Rectified Linear Unit 6.

    Applies :math:`\min(\max(x, 0), 6)` element wise.
    """
    return mx.minimum(mx.maximum(x, 0), 6.0)


def softmax(x, axis=-1):
    r"""Applies the Softmax function.

    Applies :math:`\frac{e^{x_i}}{\sum_j e^{x_j}}` element wise.
    """
    return mx.softmax(x, axis=axis)


def softplus(x):
    r"""Applies the Softplus function.

    Applies :math:`\log(1 + \exp(x))` element wise.
    """
    return mx.logaddexp(x, 0)


def softsign(x):
    r"""Applies the Softsign function.

    Applies :math:`\frac{x}{1 + |x|}` element wise.
    """
    return mx.divide(x, 1 + mx.abs(x))


def celu(x, alpha=1.0):
    r"""Applies the Continuously Differentiable Exponential Linear Unit.

    Applies :math:`\max(0, x) + \min(0, \alpha * (\exp(x / \alpha) - 1))`
    element wise.
    """
    return mx.maximum(x, 0.0) + alpha * (mx.exp(mx.minimum(x, 0.0) / alpha) - 1)


def silu(x):
    r"""Applies the Sigmoid Linear Unit. Also known as Swish.

    Applies :math:`x \sigma(x)` element wise, where :math:`\sigma(\cdot)` is
    the logistic sigmoid.
    """
    return x * mx.sigmoid(x)


def log_sigmoid(x):
    r"""Applies the Log Sigmoid function.

    Applies :math:`\log(\sigma(x)) = -\log(1 + e^{-x})` element wise.
    """
    return -softplus(-x)


def gelu(x):
    r"""Applies the Gaussian Error Linear Units function.

    .. math::
        \\textrm{GELU}(x) = x * \Phi(x)

    where :math:`\Phi(x)` is the Gaussian CDF.

    See also :func:`gelu_approx` and :func:`gelu_fast_approx` for faster
    approximations.
    """
    return x * (1 + mx.erf(x / math.sqrt(2))) / 2


def gelu_approx(x):
    r"""An approximation to Gaussian Error Linear Unit.

    See :func:`gelu` for the exact computation.

    This function approximates ``gelu`` with a maximum absolute error :math:`<
    0.0003` in the range :math:`[-6, 6]` using the following

    .. math::

        x = x \sigma\left(1.60033 x \left(1 + 0.0433603 x^2\right)\right)

    where :math:`\sigma(\cdot)` is the logistic sigmoid.
    """
    return x * mx.sigmoid(1.60033 * x * (1 + 0.0433603 * x.square()))


def gelu_fast_approx(x):
    r"""A fast approximation to Gaussian Error Linear Unit.

    See :func:`gelu` for the exact computation.

    This function approximates ``gelu`` with a maximum absolute error :math:`<
    0.015` in the range :math:`[-6, 6]` using the following

    .. math::

        x = x \sigma\left(1.773 x\right)

    where :math:`\sigma(\cdot)` is the logistic sigmoid.
    """
    return x * mx.sigmoid(1.773 * x)


@_make_activation_module
class Sigmoid(Module):
    r"""Applies the sigmoid function, element-wise.

    .. math::
        \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
    """
    pass


def step(x: mx.array, threshold: float = 0.0):
    r"""Applies the Step Activation Function.

    This function implements a binary step activation, where the output is set
    to 1 if the input is greater than a specified threshold, and 0 otherwise.

    .. math::
        \text{step}(x) = \begin{cases}
        0 & \text{if } x < \text{threshold} \\
        1 & \text{if } x \geq \text{threshold}
        \end{cases}

    Args:
        threshold: The value to threshold at.
    """

    return mx.where(x > threshold, 1, 0)


def selu(x):
    r"""Applies the Scaled Exponential Linear Unit.

    .. math::
        \text{selu}(x) = \begin{cases}
        \lambda x & \text{if } x > 0 \\
        \lambda \alpha (\exp(x) - 1) & \text{if } x \leq 0
        \end{cases}

    where :math:`\lambda = 1.0507` and :math:`\alpha = 1.67326`.

    See also :func:`elu`.
    """
    return elu(x, 1.67326) * 1.0507


def prelu(x: mx.array, alpha: mx.array) -> mx.array:
    r"""Applies the element-wise parametric ReLU.

    .. math::
        \text{PReLU}(x) = \max(0,x) + a * \min(0,x)

    where :math:`a` is an array.
    """
    return mx.maximum(0, x) + alpha * mx.minimum(0, x)


def mish(x: mx.array) -> mx.array:
    r"""Applies the Mish function, element-wise.
    Mish: A Self Regularized Non-Monotonic Neural Activation Function.

    Reference: https://arxiv.org/abs/1908.08681

    .. math::
        \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))

    """
    return x * mx.tanh(softplus(x))


def hardswish(x):
    r"""Applies the hardswish function, element-wise.

    .. math::
        \text{Hardswish}(x) = x * \min(\max(x + 3, 0), 6) / 6
    """
    max_x_3 = mx.maximum(x + 3, 0)
    return x * mx.minimum(max_x_3, 6) / 6


@_make_activation_module(mish)
class Mish(Module):
    r"""Applies the Mish function, element-wise.

    Reference: https://arxiv.org/abs/1908.08681

    .. math::
        \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))

    """
    pass


@_make_activation_module(relu)
class ReLU(Module):
    r"""Applies the Rectified Linear Unit.
        Simply ``mx.maximum(x, 0)``.

    See :func:`relu`, for the functional equivalent.
    """
    pass


class LeakyReLU(Module):
    r"""Applies the Leaky Rectified Linear Unit.

    Simply ``mx.maximum(negative_slope * x, x)``.

    Args:
        negative_slope: Controls the angle of the negative slope. Default: 1e-2.
    """

    def __init__(self, negative_slope=1e-2):
        super().__init__()
        self._negative_slope = negative_slope

    def __call__(self, x):
        return leaky_relu(x, self._negative_slope)


class ELU(Module):
    r"""Applies the Exponential Linear Unit.
        Simply ``mx.where(x > 0, x, alpha * (mx.exp(x) - 1))``.

    See :func:`elu`, for the functional equivalent.

    Args:
        alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
    """

    def __init__(self, alpha=1.0):
        super().__init__()
        self._alpha = alpha

    def __call__(self, x):
        return elu(x, self._alpha)


@_make_activation_module(relu6)
class ReLU6(Module):
    r"""Applies the Rectified Linear Unit 6.

    See :func:`relu6`, for the functional equivalent.
    """
    pass


@_make_activation_module(softmax)
class Softmax(Module):
    r"""Applies the Softmax function.

    See :func:`softmax`, for the functional equivalent.
    """
    pass


@_make_activation_module(softplus)
class Softplus(Module):
    r"""Applies the Softplus function.

    See :func:`softplus`, for the functional equivalent.
    """
    pass


@_make_activation_module(softsign)
class Softsign(Module):
    r"""Applies the Softsign function.

    See :func:`softsign`, for the functional equivalent.
    """
    pass


class CELU(Module):
    r"""Applies the Continuously Differentiable Exponential Linear Unit.
        Applies :math:`\max(0, x) + \min(0, \alpha * (\exp(x / \alpha) - 1))`
        element wise.

    See :func:`celu`, for the functional equivalent.

    Args:
        alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
    """

    def __init__(self, alpha=1.0):
        super().__init__()
        self._alpha = alpha

    def __call__(self, x):
        return celu(x, self._alpha)


@_make_activation_module(silu)
class SiLU(Module):
    r"""Applies the Sigmoid Linear Unit. Also known as Swish.

    See :func:`silu`, for the functional equivalent.
    """
    pass


@_make_activation_module(log_softmax)
class LogSoftmax(Module):
    r"""Applies the Log Softmax function.

    See :func:`log_softmax`, for the functional equivalent.
    """
    pass


@_make_activation_module(log_sigmoid)
class LogSigmoid(Module):
    r"""Applies the Log Sigmoid function.

    See :func:`log_sigmoid`, for the functional equivalent.
    """
    pass


class PReLU(Module):
    r"""Applies the element-wise parametric ReLU.
        Applies :math:`\max(0, x) + a * \min(0, x)` element wise, where :math:`a`
        is an array.

    See :func:`prelu`, for the functional equivalent.

    Args:
        num_parameters: number of :math:`a` to learn. Default: 1
        init: the initial value of :math:`a`. Default: 0.25
    """

    def __init__(self, num_parameters=1, init=0.25):
        super().__init__()
        self.weight = mx.full([num_parameters], init)

    def __call__(self, x: mx.array):
        return prelu(x, self.weight)


class GELU(Module):
    r"""Applies the Gaussian Error Linear Units.

    .. math::
        \textrm{GELU}(x) = x * \Phi(x)

    where :math:`\Phi(x)` is the Gaussian CDF.

    However, if ``approx`` is set to 'precise' or 'fast' it applies

    .. math::
        \textrm{GELUApprox}(x) &= x * \sigma\left(1.60033 * x \left(1 + 0.0433603 * x^2\right)\right) \\
        \textrm{GELUFast}(x) &= x * \sigma\left(1.773 * x\right)

    respectively.

    See :func:`gelu`, :func:`gelu_approx` and :func:`gelu_fast_approx` for the
    functional equivalents and information regarding error bounds.

    Args:
        approx ('none' | 'precise' | 'fast'): Which approximation to gelu to use if any.
    """

    def __init__(self, approx="none"):
        super().__init__()

        if approx == "none":
            self._act = gelu
        elif approx == "precise":
            self._act = gelu_approx
        elif approx == "fast":
            self._act = gelu_fast_approx
        else:
            raise ValueError(
                f"The approximation should be in ['none', 'precise', 'fast'] but '{approx}' was given"
            )

    def __call__(self, x):
        return self._act(x)


def tanh(x):
    """Applies the hyperbolic tangent function.

    Simply ``mx.tanh(x)``.
    """
    return mx.tanh(x)


@_make_activation_module(tanh)
class Tanh(Module):
    r"""Applies the hyperbolic tangent function.

    See :func:`tanh`, for the functional equivalent.
    """
    pass


@_make_activation_module(hardswish)
class Hardswish(Module):
    r"""Applies the hardswish function, element-wise.

    See :func:`hardswish`, for the functional equivalent.
    """
    pass


class Step(Module):
    r"""Applies the Step Activation Function.

    This function implements a binary step activation, where the output is set
    to 1 if the input is greater than a specified threshold, and 0 otherwise.

    .. math::
        \text{step}(x) = \begin{cases}
        0 & \text{if } x < \text{threshold} \\
        1 & \text{if } x \geq \text{threshold}
        \end{cases}

    Args:
        threshold: The value to threshold at.
    """

    def __init__(self, threshold: float = 0.0):
        super().__init__()
        self.threshold = threshold

    def __call__(self, x: mx.array):
        return step(x, self.threshold)


@_make_activation_module(selu)
class SELU(Module):
    r"""Applies the Scaled Exponential Linear Unit.

    See :func:`selu`, for the functional equivalent.
    """
    pass