File size: 19,485 Bytes
f14e74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright © 2023 Apple Inc.

import textwrap
from typing import Any, Callable, List, Optional, Tuple, Union

import mlx.core as mx
from mlx.utils import tree_flatten, tree_unflatten


class Module(dict):
    """Base class for building neural networks with MLX.

    All the layers provided in :mod:`mlx.nn.layers` subclass this class and
    your models should do the same.

    A ``Module`` can contain other ``Module`` instances or :class:`mlx.core.array`
    instances in arbitrary nesting of python lists or dicts. The ``Module``
    then allows recursively extracting all the :class:`mlx.core.array` instances
    using :meth:`mlx.nn.Module.parameters`.

    In addition, the ``Module`` has the concept of trainable and non trainable
    parameters (called "frozen"). When using :func:`mlx.nn.value_and_grad`
    the gradients are returned only with respect to the trainable parameters.
    All arrays in a module are trainable unless they are added in the "frozen"
    set by calling :meth:`freeze`.

    .. code-block:: python

        import mlx.core as mx
        import mlx.nn as nn

        class MyMLP(nn.Module):
            def __init__(self, in_dims: int, out_dims: int, hidden_dims: int = 16):
                super().__init__()

                self.in_proj = nn.Linear(in_dims, hidden_dims)
                self.out_proj = nn.Linear(hidden_dims, out_dims)

            def __call__(self, x):
                x = self.in_proj(x)
                x = mx.maximum(x, 0)
                return self.out_proj(x)

        model = MyMLP(2, 1)

        # All the model parameters are created but since MLX is lazy by
        # default, they are not evaluated yet. Calling `mx.eval` actually
        # allocates memory and initializes the parameters.
        mx.eval(model.parameters())

        # Setting a parameter to a new value is as simply as accessing that
        # parameter and assigning a new array to it.
        model.in_proj.weight = model.in_proj.weight * 2
        mx.eval(model.parameters())
    """

    def __init__(self):
        """Should be called by the subclasses of ``Module``."""
        self._no_grad = set()
        self._training = True

    @property
    def training(self):
        """Boolean indicating if the model is in training mode."""
        return self._training

    def _extra_repr(self):
        return ""

    def __repr__(self):
        children = tree_flatten(self.children(), is_leaf=self.is_module)
        value = f"{type(self).__name__}({self._extra_repr()}"
        for k, v in children:
            value += "\n"
            value += textwrap.indent(f"({k}): {repr(v)}", prefix="  ")
        if children:
            value += "\n"
        value += ")"

        return value

    def __getattr__(self, key: str):
        if key in self:
            return self[key]
        else:
            raise AttributeError(f"{type(self)!r} has no attribute {key!r}")

    def __setattr__(self, key: str, val: Any):
        self[key] = val

    def load_weights(
        self,
        file_or_weights: Union[str, List[Tuple[str, mx.array]]],
        strict: bool = True,
    ):
        """
        Update the model's weights from a ``.npz`` or a list.

        Args:
            file_or_weights (str or list(tuple(str, mx.array))): The path to
                the weights ``.npz`` file or a list of pairs of parameter names
                and arrays.
            strict (bool, optional): If ``True`` then checks that the provided
              weights exactly match the parameters of the model. Otherwise,
              only the weights actually contained in the model are loaded and
              shapes are not checked. Default: ``True``.

        Example:

            .. code-block:: python

                import mlx.core as mx
                import mlx.nn as nn
                model = nn.Linear(10, 10)

                # Load from file
                model.load_weights("weights.npz")

                # Load from list
                weights = [
                    ("weight", mx.random.uniform(shape=(10, 10))),
                    ("bias",  mx.zeros((10,))),
                ]
                model.load_weights(weights)

                # Missing weight
                weights = [
                    ("weight", mx.random.uniform(shape=(10, 10))),
                ]

                # Raises a ValueError exception
                model.load_weights(weights)

                # Ok, only updates the weight but not the bias
                model.load_weights(weights, strict=False)
        """
        weights = file_or_weights
        if isinstance(weights, str):
            weights = list(mx.load(weights).items())

        if strict:
            new_weights = dict(weights)
            curr_weights = dict(tree_flatten(self.parameters()))
            if extras := (new_weights.keys() - curr_weights.keys()):
                extras = " ".join(extras)
                raise ValueError(f"Received parameters not in model: {extras}.")
            if missing := (curr_weights.keys() - new_weights.keys()):
                missing = " ".join(missing)
                raise ValueError(f"Missing parameters: {missing}.")
            for k, v in curr_weights.items():
                v_new = new_weights[k]
                if not isinstance(v_new, mx.array):
                    raise ValueError(
                        "Expected mx.array but received "
                        f"{type(v_new)} for parameter {k}"
                    )
                if v_new.shape != v.shape:
                    raise ValueError(
                        f"Expected shape {v.shape} but received "
                        f" shape {v_new.shape} for parameter {k}"
                    )

        self.update(tree_unflatten(weights))

    def save_weights(self, file: str):
        """
        Save the model's weights to a ``.npz`` file.
        """
        mx.savez(file, **dict(tree_flatten(self.parameters())))

    @staticmethod
    def is_module(value):
        return isinstance(value, Module)

    @staticmethod
    def valid_child_filter(module, key, value):
        return isinstance(value, (dict, list))

    @staticmethod
    def valid_parameter_filter(module, key, value):
        return isinstance(value, (dict, list, mx.array)) and not key.startswith("_")

    @staticmethod
    def trainable_parameter_filter(module, key, value):
        return (
            Module.valid_parameter_filter(module, key, value)
            and key not in module._no_grad
        )

    def filter_and_map(
        self,
        filter_fn: Callable[["mlx.nn.Module", str, Any], bool],
        map_fn: Optional[Callable] = None,
        is_leaf_fn: Optional[Callable[["mlx.nn.Module", str, Any], bool]] = None,
    ):
        """Recursively filter the contents of the module using ``filter_fn``,
        namely only select keys and values where ``filter_fn`` returns true.

        This is used to implement :meth:`parameters` and :meth:`trainable_parameters`
        but it can also be used to extract any subset of the module's parameters.

        Args:
            filter_fn (Callable): Given a value, the key in which it is found
                and the containing module, decide whether to keep the value or
                drop it.
            map_fn (Callable, optional): Optionally transform the value before
                returning it.
            is_leaf_fn (Callable, optional): Given a value, the key in which it
                is found and the containing module decide if it is a leaf.

        Returns:
            A dictionary containing the contents of the module recursively filtered
        """

        map_fn = map_fn or (lambda x: x)
        is_leaf_fn = is_leaf_fn or (
            lambda m, k, v: not isinstance(v, (Module, dict, list))
        )

        def unwrap(vk, v):
            if is_leaf_fn(self, vk, v):
                return map_fn(v)

            if isinstance(v, Module):
                return v.filter_and_map(filter_fn, map_fn, is_leaf_fn)

            if isinstance(v, dict):
                nd = {}
                for k, v in v.items():
                    tk = f"{vk}.{k}"
                    nd[k] = unwrap(tk, v) if filter_fn(self, tk, v) else {}
                return nd

            if isinstance(v, list):
                nl = []
                for i, vi in enumerate(v):
                    tk = f"{vk}.{i}"
                    nl.append(unwrap(tk, vi) if filter_fn(self, tk, vi) else {})
                return nl

            raise RuntimeError("Unexpected leaf found while traversing the module")

        return {k: unwrap(k, v) for k, v in self.items() if filter_fn(self, k, v)}

    def parameters(self):
        """Recursively return all the :class:`mlx.core.array` members of this Module
        as a dict of dicts and lists."""
        return self.filter_and_map(self.valid_parameter_filter)

    def trainable_parameters(self):
        """Recursively return all the non frozen :class:`mlx.core.array` members of
        this Module as a dict of dicts and lists."""
        return self.filter_and_map(self.trainable_parameter_filter)

    def children(self):
        """Return the direct descendants of this Module instance."""
        return self.filter_and_map(
            self.valid_child_filter, is_leaf_fn=lambda m, k, v: isinstance(v, Module)
        )

    def leaf_modules(self):
        """Return the submodules that do not contain other modules."""

        def _is_leaf_module(m, k, v):
            return isinstance(v, Module) and len(tree_flatten(v.children())) == 0

        return self.filter_and_map(self.valid_child_filter, is_leaf_fn=_is_leaf_module)

    def update(self, parameters: dict):
        """Replace the parameters of this Module with the provided ones in the
        dict of dicts and lists.

        Commonly used by the optimizer to change the model to the updated
        (optimized) parameters. Also used by the :meth:`mlx.nn.value_and_grad` to set the
        tracers in the model in order to compute gradients.

        The passed in parameters dictionary need not be a full dictionary
        similar to :meth:`parameters`. Only the provided locations will be
        updated.

        Args:
            parameters (dict): A complete or partial dictionary of the modules
                               parameters.
        """

        def apply(dst, parameters):
            if isinstance(parameters, dict):
                for k in parameters:
                    if k in dst:
                        current_value = dst[k]
                        new_value = parameters[k]
                        if isinstance(current_value, mx.array):
                            dst[k] = new_value
                        elif isinstance(current_value, Module):
                            current_value.update(new_value)
                        elif isinstance(current_value, (dict, list)):
                            apply(current_value, new_value)
            elif isinstance(parameters, list):
                for i in range(len(dst)):
                    current_value = dst[i]
                    new_value = parameters[i]
                    if isinstance(current_value, mx.array):
                        dst[i] = new_value
                    elif isinstance(current_value, Module):
                        current_value.update(new_value)
                    elif isinstance(current_value, (dict, list)):
                        apply(current_value, new_value)

        apply(self, parameters)

    def apply(
        self,
        map_fn: Callable[[mx.array], mx.array],
        filter_fn: Optional[Callable[["mlx.nn.Module", str, Any], bool]] = None,
    ):
        """Map all the parameters using the provided ``map_fn`` and immediately
        update the module with the mapped parameters.

        For instance running ``model.apply(lambda x: x.astype(mx.float16))``
        casts all parameters to 16 bit floats.

        Args:
            map_fn (Callable): Maps an array to another array
            filter_fn (Callable, optional): Filter to select which arrays to
                map (default: :meth:`Module.valid_parameter_filter`).
        """
        filter_fn = filter_fn or Module.valid_parameter_filter
        self.update(self.filter_and_map(filter_fn, map_fn))

    def update_modules(self, modules: dict):
        """Replace the child modules of this :class:`Module` instance with the
        provided ones in the dict of dicts and lists.

        It is the equivalent of :meth:`Module.update` but for modules instead
        of parameters and allows us to flexibly edit complex architectures by
        programmatically swapping layers.

        The passed in parameters dictionary need not be a full dictionary
        similar to :meth:`parameters`. Only the provided locations will be
        updated.

        Args:
            modules (dict): A complete or partial dictionary of the modules
                submodules.
        """

        def apply(dst, modules):
            if isinstance(modules, dict):
                for k in modules:
                    if k in dst:
                        current_value = dst[k]
                        new_value = modules[k]
                        if self.is_module(current_value) and self.is_module(new_value):
                            dst[k] = new_value
                        elif isinstance(current_value, (dict, list)):
                            apply(current_value, new_value)
            elif isinstance(modules, list):
                for i in range(len(dst)):
                    current_value = dst[i]
                    new_value = modules[i]
                    if self.is_module(current_value) and self.is_module(new_value):
                        dst[i] = new_value
                    elif isinstance(current_value, (dict, list)):
                        apply(current_value, new_value)

        apply(self, modules)

    def apply_to_modules(self, apply_fn: Callable[[str, "mlx.nn.Module"], Any]):
        """Apply a function to all the modules in this instance (including this
        instance).

        Args:
            apply_fn (Callable): The function to apply to the modules.
        """
        module_stack = [("", self)]
        while module_stack:
            prefix, mod = module_stack.pop()
            apply_fn(prefix, mod)
            prefix = "." + prefix if prefix else ""
            module_stack.extend(
                tree_flatten(mod.children(), prefix=prefix, is_leaf=self.is_module)
            )

    def modules(self):
        """Return a list with all the modules in this instance.

        Returns:
            A list of :class:`mlx.nn.Module` instances.
        """
        modulelist = []
        self.apply_to_modules(lambda k, m: modulelist.append(m))
        return modulelist

    def named_modules(self):
        """Return a list with all the modules in this instance and their name
        with dot notation.

        Returns:
            A list of tuples (str, :class:`mlx.nn.Module`).
        """
        modulelist = []
        self.apply_to_modules(lambda k, m: modulelist.append((k, m)))
        return modulelist

    def _validate_keys(self, keys, strict):
        keys = keys if isinstance(keys, list) else [keys]
        if strict:
            for k in keys:
                if k not in self:
                    raise KeyError(f"Module doesn't contain member {k}.")
        return keys

    def freeze(
        self,
        *,
        recurse: bool = True,
        keys: Optional[Union[str, List[str]]] = None,
        strict: bool = False,
    ):
        """Freeze the Module's parameters or some of them. Freezing a parameter means not
        computing gradients for it.

        This function is idempotent i.e. freezing a frozen model is a no-op.

        Example:
            For instance to only train the attention parameters from a Transformer:

            .. code-block:: python

                model = nn.Transformer()
                model.freeze()
                model.apply_to_modules(lambda k, v: v.unfreeze() if k.endswith("attention") else None)

        Args:
            recurse (bool, optional): If True then freeze the parameters of the
                submodules as well. Default: ``True``.
            keys (str or list[str], optional): If provided then only these
                parameters will be frozen otherwise all the parameters of a
                module. For instance freeze all biases by calling
                ``module.freeze(keys="bias")``.
            strict (bool, optional): If set to ``True`` validate that the passed keys exist.
                Default: ``False``.
        """

        def _freeze_impl(_, m):
            local_keys = keys
            if local_keys is None:
                local_keys = tree_flatten(
                    m.filter_and_map(
                        lambda m, k, v: (not isinstance(v, Module))
                        and m.valid_parameter_filter(m, k, v)
                    )
                )
                local_keys = [k for (k, v) in local_keys]

            local_keys = m._validate_keys(local_keys, strict)
            m._no_grad.update(local_keys)

        if recurse:
            self.apply_to_modules(_freeze_impl)
        else:
            _freeze_impl("", self)

    def unfreeze(
        self,
        *,
        recurse: bool = True,
        keys: Optional[Union[str, List[str]]] = None,
        strict: bool = False,
    ):
        """Unfreeze the Module's parameters or some of them.

        This function is idempotent ie unfreezing a model that is not frozen is
        a noop.

        Example:

            For instance to only train the biases of a Transformer one can do:

            .. code-block:: python

                model = nn.Transformer()
                model.freeze()
                model.unfreeze(keys="bias")

        Args:
            recurse (bool, optional): If True then unfreeze the parameters of the
                submodules as well. Default: ``True``.
            keys (str or list[str], optional): If provided then only these
                parameters will be unfrozen otherwise all the parameters of a
                module. For instance unfreeze all biases by calling
                ``module.unfreeze(keys="bias")``.
            strict (bool, optional): If set to ``True`` validate that the passed keys exist.
                Default: ``False``.
        """

        def _unfreeze_impl(_, m):
            if keys is None:
                m._no_grad.clear()

            else:
                local_keys = m._validate_keys(keys, strict)
                m._no_grad.difference_update(local_keys)

        if recurse:
            self.apply_to_modules(_unfreeze_impl)
        else:
            _unfreeze_impl("", self)

    def train(self, mode: bool = True):
        """Set the model in or out of training mode.

        Training mode only applies to certain layers. For example
        :obj:`Dropout` applies a random mask in training mode, but is the
        identity in evaluation mode.

        Args:
            mode (bool): Indicate if the model should be in training or
                evaluation mode. Default: ``True``.
        """

        def _set_train(_, m):
            m._training = mode

        self.apply_to_modules(_set_train)

    def eval(self):
        """Set the model to evaluation mode.

        See :func:`train`.
        """
        self.train(False)