File size: 12,021 Bytes
f14e74e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright © 2023 Apple Inc.
from typing import Tuple
import mlx.core as mx
from mlx.nn.layers.base import Module
class InstanceNorm(Module):
r"""Applies instance normalization [1] on the inputs.
Computes
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta,
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively. Both are of size :attr:`dims`,
if :attr:`affine` is ``True``.
Args:
dims (int): The number of features of the input.
eps (float): A value added to the denominator for numerical stability. Default: ``1e-5``.
affine (bool): Default: ``False``.
Shape:
- Input: :math:`(..., C)` where :math:`C` is equal to :attr:`dims`.
- Output: Same shape as the input.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn as nn
>>> x = mx.random.normal((8, 4, 4, 16))
>>> inorm = nn.InstanceNorm(dims=16)
>>> output = inorm(x)
References:
[1]: https://arxiv.org/abs/1607.08022
"""
def __init__(
self,
dims: int,
eps: float = 1e-5,
affine: bool = False,
):
super().__init__()
if affine:
self.weight = mx.ones((dims,))
self.bias = mx.zeros((dims,))
self.dims = dims
self.eps = eps
def _extra_repr(self):
return f"{self.dims}, eps={self.eps}, affine={'weight' in self}"
def __call__(self, x: mx.array) -> mx.array:
reduction_axes = tuple(range(1, x.ndim - 1))
# Compute stats
mean = mx.mean(x, axis=reduction_axes, keepdims=True)
var = mx.var(x, axis=reduction_axes, keepdims=True)
# Normalize
x = (x - mean) * mx.rsqrt(var + self.eps)
# Scale and shift if necessary
return (self.weight * x + self.bias) if "weight" in self else x
class LayerNorm(Module):
r"""Applies layer normalization [1] on the inputs.
Computes
.. math::
y = \frac{x - E[x]}{\sqrt{Var[x]} + \epsilon} \gamma + \beta,
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively.
[1]: https://arxiv.org/abs/1607.06450
Args:
dims (int): The feature dimension of the input to normalize over
eps (float): A small additive constant for numerical stability
affine (bool): If True learn an affine transform to apply after the
normalization
"""
def __init__(self, dims: int, eps: float = 1e-5, affine: bool = True):
super().__init__()
if affine:
self.bias = mx.zeros((dims,))
self.weight = mx.ones((dims,))
self.eps = eps
self.dims = dims
def _extra_repr(self):
return f"{self.dims}, eps={self.eps}, affine={'weight' in self}"
def __call__(self, x):
means = mx.mean(x, axis=-1, keepdims=True)
var = mx.var(x, axis=-1, keepdims=True)
x = (x - means) * mx.rsqrt(var + self.eps)
return (self.weight * x + self.bias) if "weight" in self else x
class RMSNorm(Module):
r"""Applies Root Mean Square normalization [1] to the inputs.
Computes
.. math::
y = \frac{x}{\sqrt{E[x^2] + \epsilon}} \gamma
where :math:`\gamma` is a learned per feature dimension parameter initialized at
1.
[1]: https://arxiv.org/abs/1910.07467
Args:
dims (int): The feature dimension of the input to normalize over
eps (float): A small additive constant for numerical stability
"""
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def _extra_repr(self):
return f"{self.weight.shape[0]}, eps={self.eps}"
def __call__(self, x):
# S is 1/sqrt(N) where N is the size of the features of x and is used
# to compute a numerically more stable RMS of x by multiplying with S
# first and summing.
#
# This way we prefer underflow over overflow which is controlled with
# the parameter epsilon anyway.
S = 1 / x.shape[-1] ** 0.5
n = (x * S).square().sum(axis=-1, keepdims=True)
n = mx.rsqrt(n + self.eps)
return self.weight * x * n
class GroupNorm(Module):
r"""Applies Group Normalization [1] to the inputs.
Computes the same normalization as layer norm, namely
.. math::
y = \frac{x - E[x]}{\sqrt{Var[x]} + \epsilon} \gamma + \beta,
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively. However, the mean and
variance are computed over the spatial dimensions and each group of
features. In particular, the input is split into num_groups across the
feature dimension.
The feature dimension is assumed to be the last dimension and the dimensions
that precede it (except the first) are considered the spatial dimensions.
[1]: https://arxiv.org/abs/1803.08494
Args:
num_groups (int): Number of groups to separate the features into
dims (int): The feature dimensions of the input to normalize over
eps (float): A small additive constant for numerical stability
affine (bool): If True learn an affine transform to apply after the
normalization.
pytorch_compatible (bool): If True perform the group normalization in
the same order/grouping as PyTorch.
"""
def __init__(
self,
num_groups: int,
dims: int,
eps: float = 1e-5,
affine: bool = True,
pytorch_compatible: bool = False,
):
super().__init__()
if affine:
self.bias = mx.zeros((dims,))
self.weight = mx.ones((dims,))
self.num_groups = num_groups
self.dims = dims
self.eps = eps
self.pytorch_compatible = pytorch_compatible
def _extra_repr(self):
return (
f"{self.num_groups}, {self.dims}, eps={self.eps}, "
f"affine={'weight' in self}, pytorch_compatible={self.pytorch_compatible}"
)
def _pytorch_compatible_group_norm(self, x):
num_groups = self.num_groups
batch, *rest, dims = x.shape
# Split into groups
x = x.reshape(batch, -1, num_groups, dims // num_groups)
x = x.transpose(0, 1, 3, 2).reshape(batch, -1, num_groups)
# Normalize
means = mx.mean(x, axis=1, keepdims=True)
var = mx.var(x, axis=1, keepdims=True)
x = (x - means) * mx.rsqrt(var + self.eps)
x = x.reshape(batch, -1, dims // num_groups, num_groups)
x = x.transpose(0, 1, 3, 2).reshape(batch, *rest, dims)
return x
def _group_norm(self, x):
num_groups = self.num_groups
batch, *rest, dims = x.shape
# Split into groups
x = x.reshape(batch, -1, num_groups)
# Normalize
means = mx.mean(x, axis=1, keepdims=True)
var = mx.var(x, axis=1, keepdims=True)
x = (x - means) * mx.rsqrt(var + self.eps)
x = x.reshape(batch, *rest, dims)
return x
def __call__(self, x):
group_norm = (
self._pytorch_compatible_group_norm
if self.pytorch_compatible
else self._group_norm
)
x = group_norm(x)
return (self.weight * x + self.bias) if "weight" in self else x
class BatchNorm(Module):
r"""Applies Batch Normalization over a 2D or 3D input.
Computes
.. math::
y = \frac{x - E[x]}{\sqrt{Var[x]} + \epsilon} \gamma + \beta,
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively.
The input shape is specified as ``NC`` or ``NLC``, where ``N`` is the
batch, ``C`` is the number of features or channels, and ``L`` is the
sequence length. The output has the same shape as the input. For
four-dimensional arrays, the shape is ``NHWC``, where ``H`` and ``W`` are
the height and width respectively.
For more information on Batch Normalization, see the original paper `Batch
Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift <https://arxiv.org/abs/1502.03167>`_.
Args:
num_features (int): The feature dimension to normalize over.
eps (float, optional): A small additive constant for numerical
stability. Default: ``1e-5``.
momentum (float, optional): The momentum for updating the running
mean and variance. Default: ``0.1``.
affine (bool, optional): If ``True``, apply a learned affine
transformation after the normalization. Default: ``True``.
track_running_stats (bool, optional): If ``True``, track the
running mean and variance. Default: ``True``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn as nn
>>> x = mx.random.normal((5, 4))
>>> bn = nn.BatchNorm(num_features=4, affine=True)
>>> output = bn(x)
"""
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = True,
track_running_stats: bool = True,
):
super().__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.track_running_stats = track_running_stats
if affine:
self.weight = mx.ones((num_features,))
self.bias = mx.zeros((num_features,))
if self.track_running_stats:
self.running_mean = mx.zeros((num_features,))
self.running_var = mx.ones((num_features,))
self.freeze(keys=["running_mean", "running_var"], recurse=False)
def unfreeze(self, *args, **kwargs):
"""Wrap unfreeze to make sure that running_mean and var are always
frozen parameters."""
super().unfreeze(*args, **kwargs)
self.freeze(keys=["running_mean", "running_var"], recurse=False)
def _extra_repr(self):
return (
f"{self.num_features}, eps={self.eps}, "
f"momentum={self.momentum}, affine={'weight' in self}, "
f"track_running_stats={self.track_running_stats}"
)
def _calc_stats(self, x: mx.array) -> Tuple[mx.array, mx.array]:
"""
Calculate the mean and variance of the input tensor across the batch
and spatial dimensions.
Args:
x (array): Input tensor.
Returns:
tuple: Tuple containing mean and variance.
"""
reduction_axes = tuple(range(0, x.ndim - 1))
mean = mx.mean(x, axis=reduction_axes, keepdims=True)
var = mx.var(x, axis=reduction_axes, keepdims=True)
return mean, var
def __call__(self, x: mx.array) -> mx.array:
"""
Forward pass of BatchNorm.
Args:
x (array): Input tensor.
Returns:
array: Normalized output tensor.
"""
if x.ndim < 2 or x.ndim > 4:
raise ValueError(
f"Expected input tensor to have 2, 3 or 4 dimensions, but got {x.ndim}"
)
# Calculate the mean and variance used to normalize the input x. If we
# are in training mode update the running stats if needed.
mean, var = self._calc_stats(x)
if self.training and self.track_running_stats:
mu = self.momentum
self.running_mean = (1 - mu) * self.running_mean + mu * mean
self.running_var = (1 - mu) * self.running_var + mu * var
elif self.track_running_stats:
mean = self.running_mean
var = self.running_var
x = (x - mean) * mx.rsqrt(var + self.eps)
return (self.weight * x + self.bias) if "weight" in self else x
|