File size: 17,090 Bytes
f14e74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Copyright © 2023 Apple Inc.

import math
from typing import List

import mlx.core as mx
from mlx.utils import tree_map


class OptimizerState(dict):
    """The optimizer state implements a recursively defined
    :class:`collections.defaultdict`, namely a missing key in an optimizer
    state is an :class:`OptimizerState`.

    .. note::
       :meth:`OptimizerState.get` in contrast to a normal dictionary also sets
       the key to the ``default`` value if the ``key`` was not present in the
       dictionary.
    """

    def __getitem__(self, key):
        if key not in self:
            self[key] = OptimizerState()
        return super().__getitem__(key)

    def get(self, key, default):
        """If ``key`` doesn't exist set its value to ``default`` and then return it."""
        if key not in self:
            self[key] = default
        return super().__getitem__(key)


class Optimizer:
    """The base class for all optimizers. It allows us to implement an
    optimizer on a per-parameter basis and apply it to a parameter tree.

    Attributes:
        state (OptimizerState): It holds the optimizer's state dictionary.
    """

    def __init__(self):
        self.state = OptimizerState()

    def update(self, model: "mlx.nn.Module", gradients: dict):
        """Apply the gradients to the parameters of the model and update the
        model with the new parameters.

        Args:
            model (mlx.nn.Module): An mlx module to be updated.
            gradients (dict): A Python tree of gradients, most likely computed
                              via :func:`mlx.nn.value_and_grad`.
        """
        model.update(self.apply_gradients(gradients, model))

    def apply_gradients(self, gradients: dict, model: dict):
        """Apply the gradients to the parameters and return the updated parameters.

        Can be used to update a model via
        ``model.update(opt.apply_gradients(grads, model))`` which is precisely
        how :meth:`Optimizer.update` is implemented.

        Args:
            gradients (dict): A Python tree of gradients.
            model (dict): A Python tree of parameters. It can be a superset of
                          the gradients. In that case the returned python tree
                          will be of the same structure as the gradients.
        """
        return tree_map(self.apply_single, gradients, model, self.state)

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """To be extended by the children classes to implement each optimizer's
        update."""
        raise NotImplementedError()


class SGD(Optimizer):
    r"""Stochastic gradient descent optimizer.

    Updates a parameter :math:`w` with a gradient :math:`g` as follows

    .. math::

        v_{t+1} &= \mu v_t + (1 - \tau) g_t \\
        w_{t+1} &= w_t - \lambda v_{t+1}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        momentum (float, optional): The momentum strength :math:`\mu`. Default: ``0``
        weight_decay (float, optional): The weight decay (L2 penalty). Default: ``0``
        dampening (float, optional): Dampening for momentum :math:`\tau`. Default: ``0``
        nesterov (bool, optional): Enables Nesterov momentum. Default: ``False``
    """

    def __init__(
        self,
        learning_rate: float,
        momentum: float = 0.0,
        weight_decay: float = 0.0,
        dampening: float = 0.0,
        nesterov: bool = False,
    ):
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError(
                "Nesterov momentum requires a momentum and zero dampening."
            )
        super().__init__()

        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.dampening = dampening
        self.nesterov = nesterov

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the SGD parameter update and stores :math:`v` in the
        optimizer state."""
        if self.momentum <= 0:
            return parameter - self.learning_rate * gradient

        v = state.get("v", mx.zeros_like(gradient))

        if self.weight_decay != 0:
            gradient += self.weight_decay * parameter

        v = self.momentum * v
        if self.dampening > 0:
            v += (1 - self.dampening) * gradient
        else:
            v += gradient

        if self.nesterov:
            update = gradient + self.momentum * v
        else:
            update = v
        state["v"] = v
        return parameter - self.learning_rate * update


class RMSprop(Optimizer):
    r"""Implementation of the RMSprop optimizer [1].

    [1]: Tieleman, T. and Hinton, G. 2012. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning

    .. math::

        v_{t+1} &= \alpha v_t + (1 - \alpha) g_t^2 \\
        w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        alpha (float, optional): The smoothing constant :math:`\alpha`.
          Default: ``0.99``
        eps (float, optional): The term :math:`\epsilon` added to the denominator
          to improve numerical stability. Default: ``1e-8``
    """

    def __init__(self, learning_rate: float, alpha: float = 0.99, eps: float = 1e-8):
        super().__init__()

        self.learning_rate = learning_rate
        self.alpha = alpha
        self.eps = eps

        if self.alpha < 0.0:
            raise ValueError(
                f"RMSprop alpha should be >=0, {self.alpha} was provided instead"
            )
        if self.eps < 0.0:
            raise ValueError(
                f"RMSprop epsilon should be >0, {self.eps} was provided instead"
            )

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the RMSprop parameter update and stores :math:`v` in the optimizer state."""
        lr = self.learning_rate
        alpha = self.alpha
        eps = self.eps

        v = state.get("v", mx.zeros_like(gradient))
        v = alpha * v + (1 - alpha) * mx.square(gradient)
        state["v"] = v

        return parameter - lr * gradient / (mx.sqrt(v) + eps)


class Adagrad(Optimizer):
    r"""Implementation of the Adagrad optimizer [1].

    Our Adagrad implementation follows the original paper. In detail,

    [1]: Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods
    for online learning and stochastic optimization. JMLR 2011.

    .. math::

        v_{t+1} &= v_t + g_t^2 \\
        w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        eps (float, optional): The term :math:`\epsilon` added to the
          denominator to improve numerical stability. Default: ``1e-8``
    """

    def __init__(self, learning_rate: float, eps: float = 1e-8):
        super().__init__()

        self.learning_rate = learning_rate
        self.eps = eps

        if self.eps < 0.0:
            raise ValueError(
                f"Adagrad epsilon should be >0, {self.eps} was provided instead"
            )

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the Adagrad parameter update and stores :math:`v` in the
        optimizer state."""
        lr = self.learning_rate
        eps = self.eps

        v = state.get("v", mx.zeros_like(gradient))
        v = v + mx.square(gradient)
        state["v"] = v

        return parameter - lr * gradient / (mx.sqrt(v) + eps)


class AdaDelta(Optimizer):
    r"""Implementation of the AdaDelta optimizer with learning rate[1].

    Our AdaDelta implementation follows the original paper. In detail,

    [1]: Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

    .. math::

        v_{t+1} &= \rho v_t + (1 - \rho) g_t^2 \\
        \Delta w_{t+1} &= \frac{\sqrt{u_t + \epsilon}}{\sqrt{v_{t+1} + \epsilon}} g_t \\
        u_{t+1} &= \rho u_t + (1 - \rho) \Delta w_{t+1}^2 \\
        w_{t+1} &= w_t - \lambda \Delta w_{t+1}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        rho (float, optional): The coefficient :math:`\rho` used for computing a
            running average of squared gradients. Default: ``0.9``
        eps (float, optional): The term :math:`\epsilon` added to the denominator to improve
          numerical stability. Default: `1e-8`
    """

    def __init__(self, learning_rate: float, rho: float = 0.9, eps: float = 1e-6):
        super().__init__()

        self.learning_rate = learning_rate
        self.rho = rho
        self.eps = eps
        if self.rho < 0.0:
            raise ValueError(
                f"AdaDelta rho should be >=0, {self.rho} was provided instead"
            )
        if self.eps < 0.0:
            raise ValueError(
                f"AdaDelta epsilon should be >0, {self.eps} was provided instead"
            )

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the AdaDelta parameter update and stores :math:`v` and
        :math:`u` in the optimizer state."""
        lr = self.learning_rate
        rho = self.rho
        eps = self.eps

        v = state.get("v", mx.zeros_like(gradient))
        u = state.get("s", mx.zeros_like(gradient))

        v = rho * v + (1 - rho) * mx.square(gradient)
        d = mx.sqrt(u + eps) / mx.sqrt(v + eps) * gradient
        u = rho * u + (1 - rho) * mx.square(d)

        state["v"] = v
        state["u"] = u

        return parameter - lr * d


class Adam(Optimizer):
    r"""Implementation of the Adam optimizer [1].

    Our Adam implementation follows the original paper and omits the bias
    correction in the first and second moment estimates. In detail,

    [1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
    optimization. ICLR 2015.

    .. math::

        m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
        v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
        w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        betas (Tuple[float, float], optional): The coefficients
          :math:`(\beta_1, \beta_2)` used for computing running averages of the
          gradient and its square. Default: ``(0.9, 0.999)``
        eps (float, optional): The term :math:`\epsilon` added to the
          denominator to improve numerical stability. Default: ``1e-8``
    """

    def __init__(
        self, learning_rate: float, betas: List[float] = [0.9, 0.999], eps: float = 1e-8
    ):
        super().__init__()

        self.learning_rate = learning_rate
        self.betas = betas
        self.eps = eps

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the Adam parameter update and stores :math:`v` and
        :math:`m` in the optimizer state."""
        lr = self.learning_rate
        b1, b2 = self.betas
        eps = self.eps

        m = state.get("m", gradient)
        v = state.get("v", mx.square(gradient))
        m = b1 * m + (1 - b1) * gradient
        v = b2 * v + (1 - b2) * mx.square(gradient)
        state["m"] = m
        state["v"] = v

        return parameter - lr * m / (mx.sqrt(v) + eps)


class AdamW(Adam):
    r"""Implementation of the AdamW optimizer [1].

    Following the above convention, in contrast with [1], we do not use bias
    correction in the first and second moments for AdamW. We update the weights
    with a weight_decay (:math:`\lambda`) value:

    [1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay
    regularization. ICLR 2019.

    .. math::

        m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
        v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
        w_{t+1} &= w_t - \alpha (\frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}} + \lambda w_t)

    Args:
        learning_rate (float): The learning rate :math:`\alpha`.
        betas (Tuple[float, float], optional): The coefficients
          :math:`(\beta_1, \beta_2)` used for computing running averages of the
          gradient and its square. Default: ``(0.9, 0.999)``
        eps (float, optional): The term :math:`\epsilon` added to the
          denominator to improve numerical stability. Default: ``1e-8``
        weight_decay (float, optional): The weight decay :math:`\lambda`.
          Default: ``0``.
    """

    def __init__(
        self,
        learning_rate: float,
        betas: List[float] = [0.9, 0.999],
        eps: float = 1e-8,
        weight_decay: float = 0.01,
    ):
        super().__init__(learning_rate=learning_rate, betas=betas, eps=eps)
        self.weight_decay = weight_decay

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the AdamW parameter update by modifying the parameters
        passed into Adam.
        """

        return super().apply_single(
            gradient, parameter * (1 - self.learning_rate * self.weight_decay), state
        )


class Adamax(Adam):
    r"""Implementation of the Adamax optimizer. It is a variant of Adam based
    on the infinity norm [1].

    Our Adam implementation follows the original paper and omits the bias
    correction in the first and second moment estimates. In detail,

    [1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
    optimization. ICLR 2015.

    .. math::

        m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
        v_{t+1} &= \max(\beta_2 v_t, |g_t|) \\
        w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{v_{t+1} + \epsilon}

    Args:
        learning_rate (float): The learning rate :math:`\lambda`.
        betas (Tuple[float, float], optional): The coefficients
          :math:`(\beta_1, \beta_2)` used for computing running averages of the
          gradient and its square. Default: ``(0.9, 0.999)``
        eps (float, optional): The term :math:`\epsilon` added to the
          denominator to improve numerical stability. Default: ``1e-8``
    """

    def __init__(
        self, learning_rate: float, betas: List[float] = [0.9, 0.999], eps: float = 1e-8
    ):
        super().__init__(learning_rate, betas, eps)

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the Adamax parameter update and stores :math:`v` and
        :math:`m` in the optimizer state."""
        lr = self.learning_rate
        b1, b2 = self.betas
        eps = self.eps

        m = state.get("m", mx.zeros_like(gradient))
        v = state.get("v", mx.zeros_like(gradient))

        m = b1 * m + (1 - b1) * gradient
        v = mx.maximum(b2 * v, mx.abs(gradient))
        state["m"] = m
        state["v"] = v

        return parameter - lr * m / (v + eps)


class Lion(Optimizer):
    r"""Implementation of the Lion optimizer [1].

    Since updates are computed through the sign operation, they tend to
    have larger norm than for other optimizers such as SGD and Adam.
    We recommend a learning rate that is 3-10x smaller than AdamW and a
    weight decay 3-10x larger than AdamW to maintain the strength
    (lr * wd). Our Lion implementation follows the original paper. In
    detail,

    [1]: Chen, X. Symbolic Discovery of Optimization Algorithms. arXiv
    preprint arXiv:2302.06675.

    .. math::

        c_{t + 1} &= \beta_1 m_t + (1 - \beta_1) g_t
        m_{t + 1} &= \beta_2 m_t + (1 - \beta_2) g_t
        w_{t + 1} &= w_t - \eta (\text{sign}(c_t) + \lambda w_t)

    Args:
        learning_rate (float): The learning rate :math:`\eta`.
        betas (Tuple[float, float], optional): The coefficients
          :math:`(\beta_1, \beta_2)` used for computing the gradient
          momentum and update direction. Default: ``(0.9, 0.99)``
        weight_decay (float, optional): The weight decay :math:`\lambda`. Default: ``0.0``
    """

    def __init__(
        self,
        learning_rate: float,
        betas: List[float] = [0.9, 0.99],
        weight_decay: float = 0.0,
    ):
        super().__init__()

        self.learning_rate = learning_rate
        self.betas = betas
        self.weight_decay = weight_decay

    def apply_single(
        self, gradient: mx.array, parameter: mx.array, state: OptimizerState
    ):
        """Performs the Lion parameter update and stores :math:`m`
        in the optimizer state."""
        lr = self.learning_rate
        b1, b2 = self.betas
        weight_decay = self.weight_decay

        m = state.get("m", gradient)
        c = b1 * m + (1 - b1) * gradient
        state["m"] = b2 * m + (1 - b2) * gradient
        if weight_decay > 0:
            parameter = (1 - lr * weight_decay) * parameter
        return parameter - lr * mx.sign(c)