|
from ..libmp.backend import xrange |
|
from .calculus import defun |
|
|
|
try: |
|
iteritems = dict.iteritems |
|
except AttributeError: |
|
iteritems = dict.items |
|
|
|
|
|
|
|
|
|
|
|
@defun |
|
def difference(ctx, s, n): |
|
r""" |
|
Given a sequence `(s_k)` containing at least `n+1` items, returns the |
|
`n`-th forward difference, |
|
|
|
.. math :: |
|
|
|
\Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k. |
|
""" |
|
n = int(n) |
|
d = ctx.zero |
|
b = (-1) ** (n & 1) |
|
for k in xrange(n+1): |
|
d += b * s[k] |
|
b = (b * (k-n)) // (k+1) |
|
return d |
|
|
|
def hsteps(ctx, f, x, n, prec, **options): |
|
singular = options.get('singular') |
|
addprec = options.get('addprec', 10) |
|
direction = options.get('direction', 0) |
|
workprec = (prec+2*addprec) * (n+1) |
|
orig = ctx.prec |
|
try: |
|
ctx.prec = workprec |
|
h = options.get('h') |
|
if h is None: |
|
if options.get('relative'): |
|
hextramag = int(ctx.mag(x)) |
|
else: |
|
hextramag = 0 |
|
h = ctx.ldexp(1, -prec-addprec-hextramag) |
|
else: |
|
h = ctx.convert(h) |
|
|
|
direction = options.get('direction', 0) |
|
if direction: |
|
h *= ctx.sign(direction) |
|
steps = xrange(n+1) |
|
norm = h |
|
|
|
else: |
|
steps = xrange(-n, n+1, 2) |
|
norm = (2*h) |
|
|
|
if singular: |
|
x += 0.5*h |
|
values = [f(x+k*h) for k in steps] |
|
return values, norm, workprec |
|
finally: |
|
ctx.prec = orig |
|
|
|
|
|
@defun |
|
def diff(ctx, f, x, n=1, **options): |
|
r""" |
|
Numerically computes the derivative of `f`, `f'(x)`, or generally for |
|
an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`. |
|
A few basic examples are:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> diff(lambda x: x**2 + x, 1.0) |
|
3.0 |
|
>>> diff(lambda x: x**2 + x, 1.0, 2) |
|
2.0 |
|
>>> diff(lambda x: x**2 + x, 1.0, 3) |
|
0.0 |
|
>>> nprint([diff(exp, 3, n) for n in range(5)]) # exp'(x) = exp(x) |
|
[20.0855, 20.0855, 20.0855, 20.0855, 20.0855] |
|
|
|
Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)` |
|
and order `(n_1, \ldots, n_k)`, the partial derivative |
|
`f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example:: |
|
|
|
>>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1)) |
|
2.75 |
|
>>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1)) |
|
3.0 |
|
|
|
**Options** |
|
|
|
The following optional keyword arguments are recognized: |
|
|
|
``method`` |
|
Supported methods are ``'step'`` or ``'quad'``: derivatives may be |
|
computed using either a finite difference with a small step |
|
size `h` (default), or numerical quadrature. |
|
``direction`` |
|
Direction of finite difference: can be -1 for a left |
|
difference, 0 for a central difference (default), or +1 |
|
for a right difference; more generally can be any complex number. |
|
``addprec`` |
|
Extra precision for `h` used to account for the function's |
|
sensitivity to perturbations (default = 10). |
|
``relative`` |
|
Choose `h` relative to the magnitude of `x`, rather than an |
|
absolute value; useful for large or tiny `x` (default = False). |
|
``h`` |
|
As an alternative to ``addprec`` and ``relative``, manually |
|
select the step size `h`. |
|
``singular`` |
|
If True, evaluation exactly at the point `x` is avoided; this is |
|
useful for differentiating functions with removable singularities. |
|
Default = False. |
|
``radius`` |
|
Radius of integration contour (with ``method = 'quad'``). |
|
Default = 0.25. A larger radius typically is faster and more |
|
accurate, but it must be chosen so that `f` has no |
|
singularities within the radius from the evaluation point. |
|
|
|
A finite difference requires `n+1` function evaluations and must be |
|
performed at `(n+1)` times the target precision. Accordingly, `f` must |
|
support fast evaluation at high precision. |
|
|
|
With integration, a larger number of function evaluations is |
|
required, but not much extra precision is required. For high order |
|
derivatives, this method may thus be faster if f is very expensive to |
|
evaluate at high precision. |
|
|
|
**Further examples** |
|
|
|
The direction option is useful for computing left- or right-sided |
|
derivatives of nonsmooth functions:: |
|
|
|
>>> diff(abs, 0, direction=0) |
|
0.0 |
|
>>> diff(abs, 0, direction=1) |
|
1.0 |
|
>>> diff(abs, 0, direction=-1) |
|
-1.0 |
|
|
|
More generally, if the direction is nonzero, a right difference |
|
is computed where the step size is multiplied by sign(direction). |
|
For example, with direction=+j, the derivative from the positive |
|
imaginary direction will be computed:: |
|
|
|
>>> diff(abs, 0, direction=j) |
|
(0.0 - 1.0j) |
|
|
|
With integration, the result may have a small imaginary part |
|
even even if the result is purely real:: |
|
|
|
>>> diff(sqrt, 1, method='quad') # doctest:+ELLIPSIS |
|
(0.5 - 4.59...e-26j) |
|
>>> chop(_) |
|
0.5 |
|
|
|
Adding precision to obtain an accurate value:: |
|
|
|
>>> diff(cos, 1e-30) |
|
0.0 |
|
>>> diff(cos, 1e-30, h=0.0001) |
|
-9.99999998328279e-31 |
|
>>> diff(cos, 1e-30, addprec=100) |
|
-1.0e-30 |
|
|
|
""" |
|
partial = False |
|
try: |
|
orders = list(n) |
|
x = list(x) |
|
partial = True |
|
except TypeError: |
|
pass |
|
if partial: |
|
x = [ctx.convert(_) for _ in x] |
|
return _partial_diff(ctx, f, x, orders, options) |
|
method = options.get('method', 'step') |
|
if n == 0 and method != 'quad' and not options.get('singular'): |
|
return f(ctx.convert(x)) |
|
prec = ctx.prec |
|
try: |
|
if method == 'step': |
|
values, norm, workprec = hsteps(ctx, f, x, n, prec, **options) |
|
ctx.prec = workprec |
|
v = ctx.difference(values, n) / norm**n |
|
elif method == 'quad': |
|
ctx.prec += 10 |
|
radius = ctx.convert(options.get('radius', 0.25)) |
|
def g(t): |
|
rei = radius*ctx.expj(t) |
|
z = x + rei |
|
return f(z) / rei**n |
|
d = ctx.quadts(g, [0, 2*ctx.pi]) |
|
v = d * ctx.factorial(n) / (2*ctx.pi) |
|
else: |
|
raise ValueError("unknown method: %r" % method) |
|
finally: |
|
ctx.prec = prec |
|
return +v |
|
|
|
def _partial_diff(ctx, f, xs, orders, options): |
|
if not orders: |
|
return f() |
|
if not sum(orders): |
|
return f(*xs) |
|
i = 0 |
|
for i in range(len(orders)): |
|
if orders[i]: |
|
break |
|
order = orders[i] |
|
def fdiff_inner(*f_args): |
|
def inner(t): |
|
return f(*(f_args[:i] + (t,) + f_args[i+1:])) |
|
return ctx.diff(inner, f_args[i], order, **options) |
|
orders[i] = 0 |
|
return _partial_diff(ctx, fdiff_inner, xs, orders, options) |
|
|
|
@defun |
|
def diffs(ctx, f, x, n=None, **options): |
|
r""" |
|
Returns a generator that yields the sequence of derivatives |
|
|
|
.. math :: |
|
|
|
f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots |
|
|
|
With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)` |
|
function evaluations to generate the first `k` derivatives, |
|
rather than the roughly `O(k^2)` evaluations |
|
required if one calls :func:`~mpmath.diff` `k` separate times. |
|
|
|
With `n < \infty`, the generator stops as soon as the |
|
`n`-th derivative has been generated. If the exact number of |
|
needed derivatives is known in advance, this is further |
|
slightly more efficient. |
|
|
|
Options are the same as for :func:`~mpmath.diff`. |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15 |
|
>>> nprint(list(diffs(cos, 1, 5))) |
|
[0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471] |
|
>>> for i, d in zip(range(6), diffs(cos, 1)): |
|
... print("%s %s" % (i, d)) |
|
... |
|
0 0.54030230586814 |
|
1 -0.841470984807897 |
|
2 -0.54030230586814 |
|
3 0.841470984807897 |
|
4 0.54030230586814 |
|
5 -0.841470984807897 |
|
|
|
""" |
|
if n is None: |
|
n = ctx.inf |
|
else: |
|
n = int(n) |
|
if options.get('method', 'step') != 'step': |
|
k = 0 |
|
while k < n + 1: |
|
yield ctx.diff(f, x, k, **options) |
|
k += 1 |
|
return |
|
singular = options.get('singular') |
|
if singular: |
|
yield ctx.diff(f, x, 0, singular=True) |
|
else: |
|
yield f(ctx.convert(x)) |
|
if n < 1: |
|
return |
|
if n == ctx.inf: |
|
A, B = 1, 2 |
|
else: |
|
A, B = 1, n+1 |
|
while 1: |
|
callprec = ctx.prec |
|
y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options) |
|
for k in xrange(A, B): |
|
try: |
|
ctx.prec = workprec |
|
d = ctx.difference(y, k) / norm**k |
|
finally: |
|
ctx.prec = callprec |
|
yield +d |
|
if k >= n: |
|
return |
|
A, B = B, int(A*1.4+1) |
|
B = min(B, n) |
|
|
|
def iterable_to_function(gen): |
|
gen = iter(gen) |
|
data = [] |
|
def f(k): |
|
for i in xrange(len(data), k+1): |
|
data.append(next(gen)) |
|
return data[k] |
|
return f |
|
|
|
@defun |
|
def diffs_prod(ctx, factors): |
|
r""" |
|
Given a list of `N` iterables or generators yielding |
|
`f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`, |
|
generate `g(x), g'(x), g''(x), \ldots` where |
|
`g(x) = f_1(x) f_2(x) \cdots f_N(x)`. |
|
|
|
At high precision and for large orders, this is typically more efficient |
|
than numerical differentiation if the derivatives of each `f_k(x)` |
|
admit direct computation. |
|
|
|
Note: This function does not increase the working precision internally, |
|
so guard digits may have to be added externally for full accuracy. |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> f = lambda x: exp(x)*cos(x)*sin(x) |
|
>>> u = diffs(f, 1) |
|
>>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)]) |
|
>>> next(u); next(v) |
|
1.23586333600241 |
|
1.23586333600241 |
|
>>> next(u); next(v) |
|
0.104658952245596 |
|
0.104658952245596 |
|
>>> next(u); next(v) |
|
-5.96999877552086 |
|
-5.96999877552086 |
|
>>> next(u); next(v) |
|
-12.4632923122697 |
|
-12.4632923122697 |
|
|
|
""" |
|
N = len(factors) |
|
if N == 1: |
|
for c in factors[0]: |
|
yield c |
|
else: |
|
u = iterable_to_function(ctx.diffs_prod(factors[:N//2])) |
|
v = iterable_to_function(ctx.diffs_prod(factors[N//2:])) |
|
n = 0 |
|
while 1: |
|
|
|
s = u(n) * v(0) |
|
a = 1 |
|
for k in xrange(1,n+1): |
|
a = a * (n-k+1) // k |
|
s += a * u(n-k) * v(k) |
|
yield s |
|
n += 1 |
|
|
|
def dpoly(n, _cache={}): |
|
""" |
|
nth differentiation polynomial for exp (Faa di Bruno's formula). |
|
|
|
TODO: most exponents are zero, so maybe a sparse representation |
|
would be better. |
|
""" |
|
if n in _cache: |
|
return _cache[n] |
|
if not _cache: |
|
_cache[0] = {(0,):1} |
|
R = dpoly(n-1) |
|
R = dict((c+(0,),v) for (c,v) in iteritems(R)) |
|
Ra = {} |
|
for powers, count in iteritems(R): |
|
powers1 = (powers[0]+1,) + powers[1:] |
|
if powers1 in Ra: |
|
Ra[powers1] += count |
|
else: |
|
Ra[powers1] = count |
|
for powers, count in iteritems(R): |
|
if not sum(powers): |
|
continue |
|
for k,p in enumerate(powers): |
|
if p: |
|
powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:] |
|
if powers2 in Ra: |
|
Ra[powers2] += p*count |
|
else: |
|
Ra[powers2] = p*count |
|
_cache[n] = Ra |
|
return _cache[n] |
|
|
|
@defun |
|
def diffs_exp(ctx, fdiffs): |
|
r""" |
|
Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots` |
|
generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`. |
|
|
|
At high precision and for large orders, this is typically more efficient |
|
than numerical differentiation if the derivatives of `f(x)` |
|
admit direct computation. |
|
|
|
Note: This function does not increase the working precision internally, |
|
so guard digits may have to be added externally for full accuracy. |
|
|
|
**Examples** |
|
|
|
The derivatives of the gamma function can be computed using |
|
logarithmic differentiation:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> |
|
>>> def diffs_loggamma(x): |
|
... yield loggamma(x) |
|
... i = 0 |
|
... while 1: |
|
... yield psi(i,x) |
|
... i += 1 |
|
... |
|
>>> u = diffs_exp(diffs_loggamma(3)) |
|
>>> v = diffs(gamma, 3) |
|
>>> next(u); next(v) |
|
2.0 |
|
2.0 |
|
>>> next(u); next(v) |
|
1.84556867019693 |
|
1.84556867019693 |
|
>>> next(u); next(v) |
|
2.49292999190269 |
|
2.49292999190269 |
|
>>> next(u); next(v) |
|
3.44996501352367 |
|
3.44996501352367 |
|
|
|
""" |
|
fn = iterable_to_function(fdiffs) |
|
f0 = ctx.exp(fn(0)) |
|
yield f0 |
|
i = 1 |
|
while 1: |
|
s = ctx.mpf(0) |
|
for powers, c in iteritems(dpoly(i)): |
|
s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p) |
|
yield s * f0 |
|
i += 1 |
|
|
|
@defun |
|
def differint(ctx, f, x, n=1, x0=0): |
|
r""" |
|
Calculates the Riemann-Liouville differintegral, or fractional |
|
derivative, defined by |
|
|
|
.. math :: |
|
|
|
\,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m} |
|
\int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt |
|
|
|
where `f` is a given (presumably well-behaved) function, |
|
`x` is the evaluation point, `n` is the order, and `x_0` is |
|
the reference point of integration (`m` is an arbitrary |
|
parameter selected automatically). |
|
|
|
With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`, |
|
the second derivative `f''(x)`, etc. With `n = -1`, it gives |
|
`\int_{x_0}^x f(t) dt`, with `n = -2` |
|
it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc. |
|
|
|
As `n` is permitted to be any number, this operator generalizes |
|
iterated differentiation and iterated integration to a single |
|
operator with a continuous order parameter. |
|
|
|
**Examples** |
|
|
|
There is an exact formula for the fractional derivative of a |
|
monomial `x^p`, which may be used as a reference. For example, |
|
the following gives a half-derivative (order 0.5):: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> x = mpf(3); p = 2; n = 0.5 |
|
>>> differint(lambda t: t**p, x, n) |
|
7.81764019044672 |
|
>>> gamma(p+1)/gamma(p-n+1) * x**(p-n) |
|
7.81764019044672 |
|
|
|
Another useful test function is the exponential function, whose |
|
integration / differentiation formula easy generalizes |
|
to arbitrary order. Here we first compute a third derivative, |
|
and then a triply nested integral. (The reference point `x_0` |
|
is set to `-\infty` to avoid nonzero endpoint terms.):: |
|
|
|
>>> differint(lambda x: exp(pi*x), -1.5, 3) |
|
0.278538406900792 |
|
>>> exp(pi*-1.5) * pi**3 |
|
0.278538406900792 |
|
>>> differint(lambda x: exp(pi*x), 3.5, -3, -inf) |
|
1922.50563031149 |
|
>>> exp(pi*3.5) / pi**3 |
|
1922.50563031149 |
|
|
|
However, for noninteger `n`, the differentiation formula for the |
|
exponential function must be modified to give the same result as the |
|
Riemann-Liouville differintegral:: |
|
|
|
>>> x = mpf(3.5) |
|
>>> c = pi |
|
>>> n = 1+2*j |
|
>>> differint(lambda x: exp(c*x), x, n) |
|
(-123295.005390743 + 140955.117867654j) |
|
>>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n) |
|
(-123295.005390743 + 140955.117867654j) |
|
|
|
|
|
""" |
|
m = max(int(ctx.ceil(ctx.re(n)))+1, 1) |
|
r = m-n-1 |
|
g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x]) |
|
return ctx.diff(g, x, m) / ctx.gamma(m-n) |
|
|
|
@defun |
|
def diffun(ctx, f, n=1, **options): |
|
r""" |
|
Given a function `f`, returns a function `g(x)` that evaluates the nth |
|
derivative `f^{(n)}(x)`:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> cos2 = diffun(sin) |
|
>>> sin2 = diffun(sin, 4) |
|
>>> cos(1.3), cos2(1.3) |
|
(0.267498828624587, 0.267498828624587) |
|
>>> sin(1.3), sin2(1.3) |
|
(0.963558185417193, 0.963558185417193) |
|
|
|
The function `f` must support arbitrary precision evaluation. |
|
See :func:`~mpmath.diff` for additional details and supported |
|
keyword options. |
|
""" |
|
if n == 0: |
|
return f |
|
def g(x): |
|
return ctx.diff(f, x, n, **options) |
|
return g |
|
|
|
@defun |
|
def taylor(ctx, f, x, n, **options): |
|
r""" |
|
Produces a degree-`n` Taylor polynomial around the point `x` of the |
|
given function `f`. The coefficients are returned as a list. |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> nprint(chop(taylor(sin, 0, 5))) |
|
[0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333] |
|
|
|
The coefficients are computed using high-order numerical |
|
differentiation. The function must be possible to evaluate |
|
to arbitrary precision. See :func:`~mpmath.diff` for additional details |
|
and supported keyword options. |
|
|
|
Note that to evaluate the Taylor polynomial as an approximation |
|
of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed, |
|
and the point of the Taylor expansion must be subtracted from |
|
the argument: |
|
|
|
>>> p = taylor(exp, 2.0, 10) |
|
>>> polyval(p[::-1], 2.5 - 2.0) |
|
12.1824939606092 |
|
>>> exp(2.5) |
|
12.1824939607035 |
|
|
|
""" |
|
gen = enumerate(ctx.diffs(f, x, n, **options)) |
|
if options.get("chop", True): |
|
return [ctx.chop(d)/ctx.factorial(i) for i, d in gen] |
|
else: |
|
return [d/ctx.factorial(i) for i, d in gen] |
|
|
|
@defun |
|
def pade(ctx, a, L, M): |
|
r""" |
|
Computes a Pade approximation of degree `(L, M)` to a function. |
|
Given at least `L+M+1` Taylor coefficients `a` approximating |
|
a function `A(x)`, :func:`~mpmath.pade` returns coefficients of |
|
polynomials `P, Q` satisfying |
|
|
|
.. math :: |
|
|
|
P = \sum_{k=0}^L p_k x^k |
|
|
|
Q = \sum_{k=0}^M q_k x^k |
|
|
|
Q_0 = 1 |
|
|
|
A(x) Q(x) = P(x) + O(x^{L+M+1}) |
|
|
|
`P(x)/Q(x)` can provide a good approximation to an analytic function |
|
beyond the radius of convergence of its Taylor series (example |
|
from G.A. Baker 'Essentials of Pade Approximants' Academic Press, |
|
Ch.1A):: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> one = mpf(1) |
|
>>> def f(x): |
|
... return sqrt((one + 2*x)/(one + x)) |
|
... |
|
>>> a = taylor(f, 0, 6) |
|
>>> p, q = pade(a, 3, 3) |
|
>>> x = 10 |
|
>>> polyval(p[::-1], x)/polyval(q[::-1], x) |
|
1.38169105566806 |
|
>>> f(x) |
|
1.38169855941551 |
|
|
|
""" |
|
|
|
|
|
if len(a) < L+M+1: |
|
raise ValueError("L+M+1 Coefficients should be provided") |
|
|
|
if M == 0: |
|
if L == 0: |
|
return [ctx.one], [ctx.one] |
|
else: |
|
return a[:L+1], [ctx.one] |
|
|
|
|
|
|
|
|
|
|
|
A = ctx.matrix(M) |
|
for j in range(M): |
|
for i in range(min(M, L+j+1)): |
|
A[j, i] = a[L+j-i] |
|
v = -ctx.matrix(a[(L+1):(L+M+1)]) |
|
x = ctx.lu_solve(A, v) |
|
q = [ctx.one] + list(x) |
|
|
|
p = [0]*(L+1) |
|
for i in range(L+1): |
|
s = a[i] |
|
for j in range(1, min(M,i) + 1): |
|
s += q[j]*a[i-j] |
|
p[i] = s |
|
return p, q |
|
|