|
from ..libmp.backend import xrange |
|
|
|
class SpecialFunctions(object): |
|
""" |
|
This class implements special functions using high-level code. |
|
|
|
Elementary and some other functions (e.g. gamma function, basecase |
|
hypergeometric series) are assumed to be predefined by the context as |
|
"builtins" or "low-level" functions. |
|
""" |
|
defined_functions = {} |
|
|
|
|
|
|
|
|
|
THETA_Q_LIM = 1 - 10**-7 |
|
|
|
def __init__(self): |
|
cls = self.__class__ |
|
for name in cls.defined_functions: |
|
f, wrap = cls.defined_functions[name] |
|
cls._wrap_specfun(name, f, wrap) |
|
|
|
self.mpq_1 = self._mpq((1,1)) |
|
self.mpq_0 = self._mpq((0,1)) |
|
self.mpq_1_2 = self._mpq((1,2)) |
|
self.mpq_3_2 = self._mpq((3,2)) |
|
self.mpq_1_4 = self._mpq((1,4)) |
|
self.mpq_1_16 = self._mpq((1,16)) |
|
self.mpq_3_16 = self._mpq((3,16)) |
|
self.mpq_5_2 = self._mpq((5,2)) |
|
self.mpq_3_4 = self._mpq((3,4)) |
|
self.mpq_7_4 = self._mpq((7,4)) |
|
self.mpq_5_4 = self._mpq((5,4)) |
|
self.mpq_1_3 = self._mpq((1,3)) |
|
self.mpq_2_3 = self._mpq((2,3)) |
|
self.mpq_4_3 = self._mpq((4,3)) |
|
self.mpq_1_6 = self._mpq((1,6)) |
|
self.mpq_5_6 = self._mpq((5,6)) |
|
self.mpq_5_3 = self._mpq((5,3)) |
|
|
|
self._misc_const_cache = {} |
|
|
|
self._aliases.update({ |
|
'phase' : 'arg', |
|
'conjugate' : 'conj', |
|
'nthroot' : 'root', |
|
'polygamma' : 'psi', |
|
'hurwitz' : 'zeta', |
|
|
|
|
|
|
|
|
|
'fibonacci' : 'fib', |
|
'factorial' : 'fac', |
|
}) |
|
|
|
self.zetazero_memoized = self.memoize(self.zetazero) |
|
|
|
|
|
@classmethod |
|
def _wrap_specfun(cls, name, f, wrap): |
|
setattr(cls, name, f) |
|
|
|
|
|
|
|
|
|
def _besselj(ctx, n, z): raise NotImplementedError |
|
def _erf(ctx, z): raise NotImplementedError |
|
def _erfc(ctx, z): raise NotImplementedError |
|
def _gamma_upper_int(ctx, z, a): raise NotImplementedError |
|
def _expint_int(ctx, n, z): raise NotImplementedError |
|
def _zeta(ctx, s): raise NotImplementedError |
|
def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError |
|
def _ei(ctx, z): raise NotImplementedError |
|
def _e1(ctx, z): raise NotImplementedError |
|
def _ci(ctx, z): raise NotImplementedError |
|
def _si(ctx, z): raise NotImplementedError |
|
def _altzeta(ctx, s): raise NotImplementedError |
|
|
|
def defun_wrapped(f): |
|
SpecialFunctions.defined_functions[f.__name__] = f, True |
|
return f |
|
|
|
def defun(f): |
|
SpecialFunctions.defined_functions[f.__name__] = f, False |
|
return f |
|
|
|
def defun_static(f): |
|
setattr(SpecialFunctions, f.__name__, f) |
|
return f |
|
|
|
@defun_wrapped |
|
def cot(ctx, z): return ctx.one / ctx.tan(z) |
|
|
|
@defun_wrapped |
|
def sec(ctx, z): return ctx.one / ctx.cos(z) |
|
|
|
@defun_wrapped |
|
def csc(ctx, z): return ctx.one / ctx.sin(z) |
|
|
|
@defun_wrapped |
|
def coth(ctx, z): return ctx.one / ctx.tanh(z) |
|
|
|
@defun_wrapped |
|
def sech(ctx, z): return ctx.one / ctx.cosh(z) |
|
|
|
@defun_wrapped |
|
def csch(ctx, z): return ctx.one / ctx.sinh(z) |
|
|
|
@defun_wrapped |
|
def acot(ctx, z): |
|
if not z: |
|
return ctx.pi * 0.5 |
|
else: |
|
return ctx.atan(ctx.one / z) |
|
|
|
@defun_wrapped |
|
def asec(ctx, z): return ctx.acos(ctx.one / z) |
|
|
|
@defun_wrapped |
|
def acsc(ctx, z): return ctx.asin(ctx.one / z) |
|
|
|
@defun_wrapped |
|
def acoth(ctx, z): |
|
if not z: |
|
return ctx.pi * 0.5j |
|
else: |
|
return ctx.atanh(ctx.one / z) |
|
|
|
|
|
@defun_wrapped |
|
def asech(ctx, z): return ctx.acosh(ctx.one / z) |
|
|
|
@defun_wrapped |
|
def acsch(ctx, z): return ctx.asinh(ctx.one / z) |
|
|
|
@defun |
|
def sign(ctx, x): |
|
x = ctx.convert(x) |
|
if not x or ctx.isnan(x): |
|
return x |
|
if ctx._is_real_type(x): |
|
if x > 0: |
|
return ctx.one |
|
else: |
|
return -ctx.one |
|
return x / abs(x) |
|
|
|
@defun |
|
def agm(ctx, a, b=1): |
|
if b == 1: |
|
return ctx.agm1(a) |
|
a = ctx.convert(a) |
|
b = ctx.convert(b) |
|
return ctx._agm(a, b) |
|
|
|
@defun_wrapped |
|
def sinc(ctx, x): |
|
if ctx.isinf(x): |
|
return 1/x |
|
if not x: |
|
return x+1 |
|
return ctx.sin(x)/x |
|
|
|
@defun_wrapped |
|
def sincpi(ctx, x): |
|
if ctx.isinf(x): |
|
return 1/x |
|
if not x: |
|
return x+1 |
|
return ctx.sinpi(x)/(ctx.pi*x) |
|
|
|
|
|
@defun_wrapped |
|
def expm1(ctx, x): |
|
if not x: |
|
return ctx.zero |
|
|
|
if ctx.mag(x) < -ctx.prec: |
|
return x + 0.5*x**2 |
|
|
|
return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1) |
|
|
|
@defun_wrapped |
|
def log1p(ctx, x): |
|
if not x: |
|
return ctx.zero |
|
if ctx.mag(x) < -ctx.prec: |
|
return x - 0.5*x**2 |
|
return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec)) |
|
|
|
@defun_wrapped |
|
def powm1(ctx, x, y): |
|
mag = ctx.mag |
|
one = ctx.one |
|
w = x**y - one |
|
M = mag(w) |
|
|
|
if M > -8: |
|
return w |
|
|
|
if not w: |
|
if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)): |
|
return w |
|
x1 = x - one |
|
magy = mag(y) |
|
lnx = ctx.ln(x) |
|
|
|
if magy + mag(lnx) < -ctx.prec: |
|
return lnx*y + (lnx*y)**2/2 |
|
|
|
return ctx.sum_accurately(lambda: iter([x**y, -1]), 1) |
|
|
|
@defun |
|
def _rootof1(ctx, k, n): |
|
k = int(k) |
|
n = int(n) |
|
k %= n |
|
if not k: |
|
return ctx.one |
|
elif 2*k == n: |
|
return -ctx.one |
|
elif 4*k == n: |
|
return ctx.j |
|
elif 4*k == 3*n: |
|
return -ctx.j |
|
return ctx.expjpi(2*ctx.mpf(k)/n) |
|
|
|
@defun |
|
def root(ctx, x, n, k=0): |
|
n = int(n) |
|
x = ctx.convert(x) |
|
if k: |
|
|
|
if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0): |
|
return -ctx.root(-x, n) |
|
|
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
v = ctx.root(x, n, 0) * ctx._rootof1(k, n) |
|
finally: |
|
ctx.prec = prec |
|
return +v |
|
return ctx._nthroot(x, n) |
|
|
|
@defun |
|
def unitroots(ctx, n, primitive=False): |
|
gcd = ctx._gcd |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
if primitive: |
|
v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1] |
|
else: |
|
|
|
v = [ctx._rootof1(k,n) for k in range(n)] |
|
finally: |
|
ctx.prec = prec |
|
return [+x for x in v] |
|
|
|
@defun |
|
def arg(ctx, x): |
|
x = ctx.convert(x) |
|
re = ctx._re(x) |
|
im = ctx._im(x) |
|
return ctx.atan2(im, re) |
|
|
|
@defun |
|
def fabs(ctx, x): |
|
return abs(ctx.convert(x)) |
|
|
|
@defun |
|
def re(ctx, x): |
|
x = ctx.convert(x) |
|
if hasattr(x, "real"): |
|
return x.real |
|
return x |
|
|
|
@defun |
|
def im(ctx, x): |
|
x = ctx.convert(x) |
|
if hasattr(x, "imag"): |
|
return x.imag |
|
return ctx.zero |
|
|
|
@defun |
|
def conj(ctx, x): |
|
x = ctx.convert(x) |
|
try: |
|
return x.conjugate() |
|
except AttributeError: |
|
return x |
|
|
|
@defun |
|
def polar(ctx, z): |
|
return (ctx.fabs(z), ctx.arg(z)) |
|
|
|
@defun_wrapped |
|
def rect(ctx, r, phi): |
|
return r * ctx.mpc(*ctx.cos_sin(phi)) |
|
|
|
@defun |
|
def log(ctx, x, b=None): |
|
if b is None: |
|
return ctx.ln(x) |
|
wp = ctx.prec + 20 |
|
return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp) |
|
|
|
@defun |
|
def log10(ctx, x): |
|
return ctx.log(x, 10) |
|
|
|
@defun |
|
def fmod(ctx, x, y): |
|
return ctx.convert(x) % ctx.convert(y) |
|
|
|
@defun |
|
def degrees(ctx, x): |
|
return x / ctx.degree |
|
|
|
@defun |
|
def radians(ctx, x): |
|
return x * ctx.degree |
|
|
|
def _lambertw_special(ctx, z, k): |
|
|
|
if not z: |
|
if not k: |
|
return z |
|
return ctx.ninf + z |
|
if z == ctx.inf: |
|
if k == 0: |
|
return z |
|
else: |
|
return z + 2*k*ctx.pi*ctx.j |
|
if z == ctx.ninf: |
|
return (-z) + (2*k+1)*ctx.pi*ctx.j |
|
|
|
return ctx.ln(z) |
|
|
|
import math |
|
import cmath |
|
|
|
def _lambertw_approx_hybrid(z, k): |
|
imag_sign = 0 |
|
if hasattr(z, "imag"): |
|
x = float(z.real) |
|
y = z.imag |
|
if y: |
|
imag_sign = (-1) ** (y < 0) |
|
y = float(y) |
|
else: |
|
x = float(z) |
|
y = 0.0 |
|
imag_sign = 0 |
|
|
|
if not y: |
|
y = 0.0 |
|
z = complex(x,y) |
|
if k == 0: |
|
if -4.0 < y < 4.0 and -1.0 < x < 2.5: |
|
if imag_sign: |
|
|
|
if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j)) |
|
if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j)) |
|
if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j)) |
|
if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j)) |
|
|
|
if x < -0.5: |
|
if imag_sign >= 0: |
|
return (-0.318+1.34j) + (-0.697-0.593j)*(z+1) |
|
else: |
|
return (-0.318-1.34j) + (-0.697+0.593j)*(z+1) |
|
|
|
r = -0.367879441171442 |
|
if (not imag_sign) and x > r: |
|
z = x |
|
|
|
if x < -0.2: |
|
return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) |
|
|
|
if x < 0.5: return z |
|
|
|
return 0.2 + 0.3*z |
|
if (not imag_sign) and x > 0.0: |
|
L1 = math.log(x); L2 = math.log(L1) |
|
else: |
|
L1 = cmath.log(z); L2 = cmath.log(L1) |
|
elif k == -1: |
|
|
|
r = -0.367879441171442 |
|
if (not imag_sign) and r < x < 0.0: |
|
z = x |
|
if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2: |
|
return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) |
|
if (not imag_sign) and -0.2 <= x < 0.0: |
|
L1 = math.log(-x) |
|
return L1 - math.log(-L1) |
|
else: |
|
if imag_sign == -1 and (not y) and x < 0.0: |
|
L1 = cmath.log(z) - 3.1415926535897932j |
|
else: |
|
L1 = cmath.log(z) - 6.2831853071795865j |
|
L2 = cmath.log(L1) |
|
return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2) |
|
|
|
def _lambertw_series(ctx, z, k, tol): |
|
""" |
|
Return rough approximation for W_k(z) from an asymptotic series, |
|
sufficiently accurate for the Halley iteration to converge to |
|
the correct value. |
|
""" |
|
magz = ctx.mag(z) |
|
if (-10 < magz < 900) and (-1000 < k < 1000): |
|
|
|
if magz < 1 and abs(z+0.36787944117144) < 0.05: |
|
if k == 0 or (k == -1 and ctx._im(z) >= 0) or \ |
|
(k == 1 and ctx._im(z) < 0): |
|
delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)]) |
|
cancellation = -ctx.mag(delta) |
|
ctx.prec += cancellation |
|
|
|
p = ctx.sqrt(2*(ctx.e*z+1)) |
|
ctx.prec -= cancellation |
|
u = {0:ctx.mpf(-1), 1:ctx.mpf(1)} |
|
a = {0:ctx.mpf(2), 1:ctx.mpf(-1)} |
|
if k != 0: |
|
p = -p |
|
s = ctx.zero |
|
|
|
|
|
|
|
for l in xrange(max(2,cancellation)): |
|
if l not in u: |
|
a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l)) |
|
u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1) |
|
term = u[l] * p**l |
|
s += term |
|
if ctx.mag(term) < -tol: |
|
return s, True |
|
l += 1 |
|
ctx.prec += cancellation//2 |
|
return s, False |
|
if k == 0 or k == -1: |
|
return _lambertw_approx_hybrid(z, k), False |
|
if k == 0: |
|
if magz < -1: |
|
return z*(1-z), False |
|
L1 = ctx.ln(z) |
|
L2 = ctx.ln(L1) |
|
elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0): |
|
L1 = ctx.ln(-z) |
|
return L1 - ctx.ln(-L1), False |
|
else: |
|
|
|
|
|
L1 = ctx.ln(z) + 2j*ctx.pi*k |
|
L2 = ctx.ln(L1) |
|
return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False |
|
|
|
@defun |
|
def lambertw(ctx, z, k=0): |
|
z = ctx.convert(z) |
|
k = int(k) |
|
if not ctx.isnormal(z): |
|
return _lambertw_special(ctx, z, k) |
|
prec = ctx.prec |
|
ctx.prec += 20 + ctx.mag(k or 1) |
|
wp = ctx.prec |
|
tol = wp - 5 |
|
w, done = _lambertw_series(ctx, z, k, tol) |
|
if not done: |
|
|
|
two = ctx.mpf(2) |
|
for i in xrange(100): |
|
ew = ctx.exp(w) |
|
wew = w*ew |
|
wewz = wew-z |
|
wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two)) |
|
if ctx.mag(wn-w) <= ctx.mag(wn) - tol: |
|
w = wn |
|
break |
|
else: |
|
w = wn |
|
if i == 100: |
|
ctx.warn("Lambert W iteration failed to converge for z = %s" % z) |
|
ctx.prec = prec |
|
return +w |
|
|
|
@defun_wrapped |
|
def bell(ctx, n, x=1): |
|
x = ctx.convert(x) |
|
if not n: |
|
if ctx.isnan(x): |
|
return x |
|
return type(x)(1) |
|
if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n): |
|
return x**n |
|
if n == 1: return x |
|
if n == 2: return x*(x+1) |
|
if x == 0: return ctx.sincpi(n) |
|
return _polyexp(ctx, n, x, True) / ctx.exp(x) |
|
|
|
def _polyexp(ctx, n, x, extra=False): |
|
def _terms(): |
|
if extra: |
|
yield ctx.sincpi(n) |
|
t = x |
|
k = 1 |
|
while 1: |
|
yield k**n * t |
|
k += 1 |
|
t = t*x/k |
|
return ctx.sum_accurately(_terms, check_step=4) |
|
|
|
@defun_wrapped |
|
def polyexp(ctx, s, z): |
|
if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s): |
|
return z**s |
|
if z == 0: return z*s |
|
if s == 0: return ctx.expm1(z) |
|
if s == 1: return ctx.exp(z)*z |
|
if s == 2: return ctx.exp(z)*z*(z+1) |
|
return _polyexp(ctx, s, z) |
|
|
|
@defun_wrapped |
|
def cyclotomic(ctx, n, z): |
|
n = int(n) |
|
if n < 0: |
|
raise ValueError("n cannot be negative") |
|
p = ctx.one |
|
if n == 0: |
|
return p |
|
if n == 1: |
|
return z - p |
|
if n == 2: |
|
return z + p |
|
|
|
|
|
|
|
a_prod = 1 |
|
b_prod = 1 |
|
num_zeros = 0 |
|
num_poles = 0 |
|
for d in range(1,n+1): |
|
if not n % d: |
|
w = ctx.moebius(n//d) |
|
|
|
|
|
b = -ctx.powm1(z, d) |
|
if b: |
|
p *= b**w |
|
else: |
|
if w == 1: |
|
a_prod *= d |
|
num_zeros += 1 |
|
elif w == -1: |
|
b_prod *= d |
|
num_poles += 1 |
|
|
|
if num_zeros: |
|
if num_zeros > num_poles: |
|
p *= 0 |
|
else: |
|
p *= a_prod |
|
p /= b_prod |
|
return p |
|
|
|
@defun |
|
def mangoldt(ctx, n): |
|
r""" |
|
Evaluates the von Mangoldt function `\Lambda(n) = \log p` |
|
if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise. |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> [mangoldt(n) for n in range(-2,3)] |
|
[0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321] |
|
>>> mangoldt(6) |
|
0.0 |
|
>>> mangoldt(7) |
|
1.945910149055313305105353 |
|
>>> mangoldt(8) |
|
0.6931471805599453094172321 |
|
>>> fsum(mangoldt(n) for n in range(101)) |
|
94.04531122935739224600493 |
|
>>> fsum(mangoldt(n) for n in range(10001)) |
|
10013.39669326311478372032 |
|
|
|
""" |
|
n = int(n) |
|
if n < 2: |
|
return ctx.zero |
|
if n % 2 == 0: |
|
|
|
if n & (n-1) == 0: |
|
return +ctx.ln2 |
|
else: |
|
return ctx.zero |
|
|
|
|
|
|
|
|
|
for p in (3,5,7,11,13,17,19,23,29,31): |
|
if not n % p: |
|
q, r = n // p, 0 |
|
while q > 1: |
|
q, r = divmod(q, p) |
|
if r: |
|
return ctx.zero |
|
return ctx.ln(p) |
|
if ctx.isprime(n): |
|
return ctx.ln(n) |
|
|
|
if n > 10**30: |
|
raise NotImplementedError |
|
k = 2 |
|
while 1: |
|
p = int(n**(1./k) + 0.5) |
|
if p < 2: |
|
return ctx.zero |
|
if p ** k == n: |
|
if ctx.isprime(p): |
|
return ctx.ln(p) |
|
k += 1 |
|
|
|
@defun |
|
def stirling1(ctx, n, k, exact=False): |
|
v = ctx._stirling1(int(n), int(k)) |
|
if exact: |
|
return int(v) |
|
else: |
|
return ctx.mpf(v) |
|
|
|
@defun |
|
def stirling2(ctx, n, k, exact=False): |
|
v = ctx._stirling2(int(n), int(k)) |
|
if exact: |
|
return int(v) |
|
else: |
|
return ctx.mpf(v) |
|
|