|
""" |
|
--------------------------------------------------------------------- |
|
.. sectionauthor:: Juan Arias de Reyna <[email protected]> |
|
|
|
This module implements zeta-related functions using the Riemann-Siegel |
|
expansion: zeta_offline(s,k=0) |
|
|
|
* coef(J, eps): Need in the computation of Rzeta(s,k) |
|
|
|
* Rzeta_simul(s, der=0) computes Rzeta^(k)(s) and Rzeta^(k)(1-s) simultaneously |
|
for 0 <= k <= der. Used by zeta_offline and z_offline |
|
|
|
* Rzeta_set(s, derivatives) computes Rzeta^(k)(s) for given derivatives, used by |
|
z_half(t,k) and zeta_half |
|
|
|
* z_offline(w,k): Z(w) and its derivatives of order k <= 4 |
|
* z_half(t,k): Z(t) (Riemann Siegel function) and its derivatives of order k <= 4 |
|
* zeta_offline(s): zeta(s) and its derivatives of order k<= 4 |
|
* zeta_half(1/2+it,k): zeta(s) and its derivatives of order k<= 4 |
|
|
|
* rs_zeta(s,k=0) Computes zeta^(k)(s) Unifies zeta_half and zeta_offline |
|
* rs_z(w,k=0) Computes Z^(k)(w) Unifies z_offline and z_half |
|
---------------------------------------------------------------------- |
|
|
|
This program uses Riemann-Siegel expansion even to compute |
|
zeta(s) on points s = sigma + i t with sigma arbitrary not |
|
necessarily equal to 1/2. |
|
|
|
It is founded on a new deduction of the formula, with rigorous |
|
and sharp bounds for the terms and rest of this expansion. |
|
|
|
More information on the papers: |
|
|
|
J. Arias de Reyna, High Precision Computation of Riemann's |
|
Zeta Function by the Riemann-Siegel Formula I, II |
|
|
|
We refer to them as I, II. |
|
|
|
In them we shall find detailed explanation of all the |
|
procedure. |
|
|
|
The program uses Riemann-Siegel expansion. |
|
This is useful when t is big, ( say t > 10000 ). |
|
The precision is limited, roughly it can compute zeta(sigma+it) |
|
with an error less than exp(-c t) for some constant c depending |
|
on sigma. The program gives an error when the Riemann-Siegel |
|
formula can not compute to the wanted precision. |
|
|
|
""" |
|
|
|
import math |
|
|
|
class RSCache(object): |
|
def __init__(ctx): |
|
ctx._rs_cache = [0, 10, {}, {}] |
|
|
|
from .functions import defun |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _coef(ctx, J, eps): |
|
r""" |
|
Computes the coefficients `c_n` for `0\le n\le 2J` with error less than eps |
|
|
|
**Definition** |
|
|
|
The coefficients c_n are defined by |
|
|
|
.. math :: |
|
|
|
\begin{equation} |
|
F(z)=\frac{e^{\pi i |
|
\bigl(\frac{z^2}{2}+\frac38\bigr)}-i\sqrt{2}\cos\frac{\pi}{2}z}{2\cos\pi |
|
z}=\sum_{n=0}^\infty c_{2n} z^{2n} |
|
\end{equation} |
|
|
|
they are computed applying the relation |
|
|
|
.. math :: |
|
|
|
\begin{multline} |
|
c_{2n}=-\frac{i}{\sqrt{2}}\Bigl(\frac{\pi}{2}\Bigr)^{2n} |
|
\sum_{k=0}^n\frac{(-1)^k}{(2k)!} |
|
2^{2n-2k}\frac{(-1)^{n-k}E_{2n-2k}}{(2n-2k)!}+\\ |
|
+e^{3\pi i/8}\sum_{j=0}^n(-1)^j\frac{ |
|
E_{2j}}{(2j)!}\frac{i^{n-j}\pi^{n+j}}{(n-j)!2^{n-j+1}}. |
|
\end{multline} |
|
""" |
|
|
|
newJ = J+2 |
|
neweps6 = eps/2. |
|
|
|
|
|
|
|
|
|
|
|
wpvw = max(ctx.mag(10*(newJ+3)), 4*newJ+5-ctx.mag(neweps6)) |
|
|
|
|
|
E = ctx._eulernum(2*newJ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wppi = max(ctx.mag(40*newJ), ctx.mag(newJ)+3 +wpvw) |
|
ctx.prec = wppi |
|
pipower = {} |
|
pipower[0] = ctx.one |
|
pipower[1] = ctx.pi |
|
for n in range(2,2*newJ+1): |
|
pipower[n] = pipower[n-1]*ctx.pi |
|
|
|
|
|
|
|
ctx.prec = wpvw+2 |
|
v={} |
|
w={} |
|
for n in range(0,newJ+1): |
|
va = (-1)**n * ctx._eulernum(2*n) |
|
va = ctx.mpf(va)/ctx.fac(2*n) |
|
v[n]=va*pipower[2*n] |
|
for n in range(0,2*newJ+1): |
|
wa = ctx.one/ctx.fac(n) |
|
wa=wa/(2**n) |
|
w[n]=wa*pipower[n] |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
wpp1a = 9 - ctx.mag(neweps6) |
|
P1 = {} |
|
for n in range(0,newJ+1): |
|
ctx.prec = 15 |
|
wpp1 = max(ctx.mag(10*(n+4)),4*n+wpp1a) |
|
ctx.prec = wpp1 |
|
sump = 0 |
|
for k in range(0,n+1): |
|
sump += ((-1)**k) * v[k]*w[2*n-2*k] |
|
P1[n]=((-1)**(n+1))*ctx.j*sump |
|
P2={} |
|
for n in range(0,newJ+1): |
|
ctx.prec = 15 |
|
wpp2 = max(ctx.mag(10*(n+4)),4*n+wpp1a) |
|
ctx.prec = wpp2 |
|
sump = 0 |
|
for k in range(0,n+1): |
|
sump += (ctx.j**(n-k)) * v[k]*w[n-k] |
|
P2[n]=sump |
|
|
|
|
|
ctx.prec = 15 |
|
wpc0 = 5 - ctx.mag(neweps6) |
|
wpc = max(6,4*newJ+wpc0) |
|
ctx.prec = wpc |
|
mu = ctx.sqrt(ctx.mpf('2'))/2 |
|
nu = ctx.expjpi(3./8)/2 |
|
c={} |
|
for n in range(0,newJ): |
|
ctx.prec = 15 |
|
wpc = max(6,4*n+wpc0) |
|
ctx.prec = wpc |
|
c[2*n] = mu*P1[n]+nu*P2[n] |
|
for n in range(1,2*newJ,2): |
|
c[n] = 0 |
|
return [newJ, neweps6, c, pipower] |
|
|
|
def coef(ctx, J, eps): |
|
_cache = ctx._rs_cache |
|
if J <= _cache[0] and eps >= _cache[1]: |
|
return _cache[2], _cache[3] |
|
orig = ctx._mp.prec |
|
try: |
|
data = _coef(ctx._mp, J, eps) |
|
finally: |
|
ctx._mp.prec = orig |
|
if ctx is not ctx._mp: |
|
data[2] = dict((k,ctx.convert(v)) for (k,v) in data[2].items()) |
|
data[3] = dict((k,ctx.convert(v)) for (k,v) in data[3].items()) |
|
ctx._rs_cache[:] = data |
|
return ctx._rs_cache[2], ctx._rs_cache[3] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def aux_M_Fp(ctx, xA, xeps4, a, xB1, xL): |
|
|
|
|
|
aux1 = 126.0657606*xA/xeps4 |
|
aux1 = ctx.ln(aux1) |
|
aux2 = (2*ctx.ln(ctx.pi)+ctx.ln(xB1)+ctx.ln(a))/3 -ctx.ln(2*ctx.pi)/2 |
|
m = 3*xL-3 |
|
aux3= (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) |
|
while((aux1 < m*aux2+ aux3)and (m>1)): |
|
m = m - 1 |
|
aux3 = (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) |
|
xM = m |
|
return xM |
|
|
|
def aux_J_needed(ctx, xA, xeps4, a, xB1, xM): |
|
|
|
|
|
|
|
|
|
h1 = xeps4/(632*xA) |
|
h2 = xB1*a * 126.31337419529260248 |
|
h2 = h1 * ctx.power((h2/xM**2),(xM-1)/3) / xM |
|
h3 = min(h1,h2) |
|
return h3 |
|
|
|
def Rzeta_simul(ctx, s, der=0): |
|
|
|
wpinitial = ctx.prec |
|
|
|
|
|
|
|
t = ctx._im(s) |
|
xsigma = ctx._re(s) |
|
ysigma = 1 - xsigma |
|
|
|
|
|
ctx.prec = 15 |
|
a = ctx.sqrt(t/(2*ctx.pi)) |
|
xasigma = a ** xsigma |
|
yasigma = a ** ysigma |
|
|
|
|
|
xA1=ctx.power(2, ctx.mag(xasigma)-1) |
|
yA1=ctx.power(2, ctx.mag(yasigma)-1) |
|
|
|
|
|
eps = ctx.power(2, -wpinitial) |
|
eps1 = eps/6. |
|
xeps2 = eps * xA1/3. |
|
yeps2 = eps * yA1/3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ctx.prec = 15 |
|
if xsigma > 0: |
|
xb = 2. |
|
xc = math.pow(9,xsigma)/4.44288 |
|
|
|
xA = math.pow(9,xsigma) |
|
xB1 = 1 |
|
else: |
|
xb = 2.25158 |
|
xc = math.pow(2,-xsigma)/4.44288 |
|
xA = math.pow(2,-xsigma) |
|
xB1 = 1.10789 |
|
|
|
if(ysigma > 0): |
|
yb = 2. |
|
yc = math.pow(9,ysigma)/4.44288 |
|
|
|
yA = math.pow(9,ysigma) |
|
yB1 = 1 |
|
else: |
|
yb = 2.25158 |
|
yc = math.pow(2,-ysigma)/4.44288 |
|
yA = math.pow(2,-ysigma) |
|
yB1 = 1.10789 |
|
|
|
|
|
|
|
|
|
ctx.prec = 15 |
|
xL = 1 |
|
while 3*xc*ctx.gamma(xL*0.5) * ctx.power(xb*a,-xL) >= xeps2: |
|
xL = xL+1 |
|
xL = max(2,xL) |
|
yL = 1 |
|
while 3*yc*ctx.gamma(yL*0.5) * ctx.power(yb*a,-yL) >= yeps2: |
|
yL = yL+1 |
|
yL = max(2,yL) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((3*xL >= 2*a*a/25.) or (3*xL+2+xsigma<0) or (abs(xsigma) > a/2.) or \ |
|
(3*yL >= 2*a*a/25.) or (3*yL+2+ysigma<0) or (abs(ysigma) > a/2.)): |
|
ctx.prec = wpinitial |
|
raise NotImplementedError("Riemann-Siegel can not compute with such precision") |
|
|
|
|
|
L = max(xL, yL) |
|
|
|
|
|
|
|
|
|
|
|
xeps3 = xeps2/(4*xL) |
|
yeps3 = yeps2/(4*yL) |
|
|
|
|
|
|
|
|
|
xeps4 = xeps3/(3*xL) |
|
yeps4 = yeps3/(3*yL) |
|
|
|
|
|
xM = aux_M_Fp(ctx, xA, xeps4, a, xB1, xL) |
|
yM = aux_M_Fp(ctx, yA, yeps4, a, yB1, yL) |
|
M = max(xM, yM) |
|
|
|
|
|
h3 = aux_J_needed(ctx, xA, xeps4, a, xB1, xM) |
|
h4 = aux_J_needed(ctx, yA, yeps4, a, yB1, yM) |
|
h3 = min(h3,h4) |
|
J = 12 |
|
jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) |
|
while jvalue > h3: |
|
J = J+1 |
|
jvalue = (2*ctx.pi)*jvalue/J |
|
|
|
|
|
|
|
|
|
eps5={} |
|
xforeps5 = math.pi*math.pi*xB1*a |
|
yforeps5 = math.pi*math.pi*yB1*a |
|
for m in range(0,22): |
|
xaux1 = math.pow(xforeps5, m/3)/(316.*xA) |
|
yaux1 = math.pow(yforeps5, m/3)/(316.*yA) |
|
aux1 = min(xaux1, yaux1) |
|
aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) |
|
aux2 = math.sqrt(aux2) |
|
eps5[m] = (aux1*aux2*min(xeps4,yeps4)) |
|
|
|
|
|
|
|
twenty = min(3*L-3, 21)+1 |
|
aux = 6812*J |
|
wpfp = ctx.mag(44*J) |
|
for m in range(0,twenty): |
|
wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) |
|
|
|
|
|
|
|
ctx.prec = wpfp + ctx.mag(t)+20 |
|
a = ctx.sqrt(t/(2*ctx.pi)) |
|
N = ctx.floor(a) |
|
p = 1-2*(a-N) |
|
|
|
|
|
|
|
|
|
num=ctx.floor(p*(ctx.mpf('2')**wpfp)) |
|
difference = p * (ctx.mpf('2')**wpfp)-num |
|
if (difference < 0.5): |
|
num = num |
|
else: |
|
num = num+1 |
|
p = ctx.convert(num * (ctx.mpf('2')**(-wpfp))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eps6 = ctx.power(ctx.convert(2*ctx.pi), J)/(ctx.gamma(J+1)*3*J) |
|
|
|
|
|
cc = {} |
|
cont = {} |
|
cont, pipowers = coef(ctx, J, eps6) |
|
cc=cont.copy() |
|
Fp={} |
|
for n in range(M, 3*L-2): |
|
Fp[n] = 0 |
|
Fp={} |
|
ctx.prec = wpfp |
|
for m in range(0,M+1): |
|
sumP = 0 |
|
for k in range(2*J-m-1,-1,-1): |
|
sumP = (sumP * p)+ cc[k] |
|
Fp[m] = sumP |
|
|
|
for k in range(0,2*J-m-1): |
|
cc[k] = (k+1)* cc[k+1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
xwpd={} |
|
d1 = max(6,ctx.mag(40*L*L)) |
|
xd2 = 13+ctx.mag((1+abs(xsigma))*xA)-ctx.mag(xeps4)-1 |
|
xconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*xB1*xB1)) /2 |
|
for n in range(0,L): |
|
xd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*xconst)+xd2 |
|
xwpd[n]=max(xd3,d1) |
|
|
|
|
|
ctx.prec = xwpd[1]+10 |
|
xpsigma = 1-(2*xsigma) |
|
xd = {} |
|
xd[0,0,-2]=0; xd[0,0,-1]=0; xd[0,0,0]=1; xd[0,0,1]=0 |
|
xd[0,-1,-2]=0; xd[0,-1,-1]=0; xd[0,-1,0]=1; xd[0,-1,1]=0 |
|
for n in range(1,L): |
|
ctx.prec = xwpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
m = 3*n-2*k |
|
if(m!=0): |
|
m1 = ctx.one/m |
|
c1= m1/4 |
|
c2=(xpsigma*m1)/2 |
|
c3=-(m+1) |
|
xd[0,n,k]=c3*xd[0,n-1,k-2]+c1*xd[0,n-1,k]+c2*xd[0,n-1,k-1] |
|
else: |
|
xd[0,n,k]=0 |
|
for r in range(0,k): |
|
add=xd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) |
|
xd[0,n,k] -= ((-1)**(k-r))*add |
|
xd[0,n,-2]=0; xd[0,n,-1]=0; xd[0,n,3*n//2+1]=0 |
|
for mu in range(-2,der+1): |
|
for n in range(-2,L): |
|
for k in range(-3,max(1,3*n//2+2)): |
|
if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): |
|
xd[mu,n,k] = 0 |
|
for mu in range(1,der+1): |
|
for n in range(0,L): |
|
ctx.prec = xwpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
aux=(2*mu-2)*xd[mu-2,n-2,k-3]+2*(xsigma+n-2)*xd[mu-1,n-2,k-3] |
|
xd[mu,n,k] = aux - xd[mu-1,n-1,k-1] |
|
|
|
|
|
|
|
ywpd={} |
|
d1 = max(6,ctx.mag(40*L*L)) |
|
yd2 = 13+ctx.mag((1+abs(ysigma))*yA)-ctx.mag(yeps4)-1 |
|
yconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*yB1*yB1)) /2 |
|
for n in range(0,L): |
|
yd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*yconst)+yd2 |
|
ywpd[n]=max(yd3,d1) |
|
|
|
|
|
ctx.prec = ywpd[1]+10 |
|
ypsigma = 1-(2*ysigma) |
|
yd = {} |
|
yd[0,0,-2]=0; yd[0,0,-1]=0; yd[0,0,0]=1; yd[0,0,1]=0 |
|
yd[0,-1,-2]=0; yd[0,-1,-1]=0; yd[0,-1,0]=1; yd[0,-1,1]=0 |
|
for n in range(1,L): |
|
ctx.prec = ywpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
m = 3*n-2*k |
|
if(m!=0): |
|
m1 = ctx.one/m |
|
c1= m1/4 |
|
c2=(ypsigma*m1)/2 |
|
c3=-(m+1) |
|
yd[0,n,k]=c3*yd[0,n-1,k-2]+c1*yd[0,n-1,k]+c2*yd[0,n-1,k-1] |
|
else: |
|
yd[0,n,k]=0 |
|
for r in range(0,k): |
|
add=yd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) |
|
yd[0,n,k] -= ((-1)**(k-r))*add |
|
yd[0,n,-2]=0; yd[0,n,-1]=0; yd[0,n,3*n//2+1]=0 |
|
|
|
for mu in range(-2,der+1): |
|
for n in range(-2,L): |
|
for k in range(-3,max(1,3*n//2+2)): |
|
if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): |
|
yd[mu,n,k] = 0 |
|
for mu in range(1,der+1): |
|
for n in range(0,L): |
|
ctx.prec = ywpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
aux=(2*mu-2)*yd[mu-2,n-2,k-3]+2*(ysigma+n-2)*yd[mu-1,n-2,k-3] |
|
yd[mu,n,k] = aux - yd[mu-1,n-1,k-1] |
|
|
|
|
|
|
|
|
|
|
|
xwptcoef={} |
|
xwpterm={} |
|
ctx.prec = 15 |
|
c1 = ctx.mag(40*(L+2)) |
|
xc2 = ctx.mag(68*(L+2)*xA) |
|
xc4 = ctx.mag(xB1*a*math.sqrt(ctx.pi))-1 |
|
for k in range(0,L): |
|
xc3 = xc2 - k*xc4+ctx.mag(ctx.fac(k+0.5))/2. |
|
xwptcoef[k] = (max(c1,xc3-ctx.mag(xeps4)+1)+1 +20)*1.5 |
|
xwpterm[k] = (max(c1,ctx.mag(L+2)+xc3-ctx.mag(xeps3)+1)+1 +20) |
|
ywptcoef={} |
|
ywpterm={} |
|
ctx.prec = 15 |
|
c1 = ctx.mag(40*(L+2)) |
|
yc2 = ctx.mag(68*(L+2)*yA) |
|
yc4 = ctx.mag(yB1*a*math.sqrt(ctx.pi))-1 |
|
for k in range(0,L): |
|
yc3 = yc2 - k*yc4+ctx.mag(ctx.fac(k+0.5))/2. |
|
ywptcoef[k] = ((max(c1,yc3-ctx.mag(yeps4)+1))+10)*1.5 |
|
ywpterm[k] = (max(c1,ctx.mag(L+2)+yc3-ctx.mag(yeps3)+1)+1)+10 |
|
|
|
|
|
|
|
xfortcoef={} |
|
for mu in range(0,der+1): |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
xfortcoef[mu,k,ell]=0 |
|
for mu in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = xwptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
xfortcoef[mu,k,ell]=xd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] |
|
xfortcoef[mu,k,ell]=xfortcoef[mu,k,ell]/((2*ctx.j)**ell) |
|
|
|
def trunc_a(t): |
|
wp = ctx.prec |
|
ctx.prec = wp + 2 |
|
aa = ctx.sqrt(t/(2*ctx.pi)) |
|
ctx.prec = wp |
|
return aa |
|
|
|
|
|
xtcoef={} |
|
for mu in range(0,der+1): |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
xtcoef[mu,k,ell]=0 |
|
ctx.prec = max(xwptcoef[0],ywptcoef[0])+3 |
|
aa= trunc_a(t) |
|
la = -ctx.ln(aa) |
|
|
|
for chi in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = xwptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
xtcoef[chi,k,ell] =0 |
|
for mu in range(0, chi+1): |
|
tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*xfortcoef[chi-mu,k,ell] |
|
xtcoef[chi,k,ell] += tcoefter |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yfortcoef={} |
|
for mu in range(0,der+1): |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
yfortcoef[mu,k,ell]=0 |
|
for mu in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = ywptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
yfortcoef[mu,k,ell]=yd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] |
|
yfortcoef[mu,k,ell]=yfortcoef[mu,k,ell]/((2*ctx.j)**ell) |
|
|
|
ytcoef={} |
|
for chi in range(0,der+1): |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
ytcoef[chi,k,ell]=0 |
|
for chi in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = ywptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
ytcoef[chi,k,ell] =0 |
|
for mu in range(0, chi+1): |
|
tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*yfortcoef[chi-mu,k,ell] |
|
ytcoef[chi,k,ell] += tcoefter |
|
|
|
|
|
|
|
|
|
|
|
ctx.prec = max(xwptcoef[0], ywptcoef[0])+2 |
|
av = {} |
|
av[0] = 1 |
|
av[1] = av[0]/a |
|
|
|
ctx.prec = max(xwptcoef[0],ywptcoef[0]) |
|
for k in range(2,L): |
|
av[k] = av[k-1] * av[1] |
|
|
|
|
|
xtv = {} |
|
for chi in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = xwptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
xtv[chi,k,ell] = xtcoef[chi,k,ell]* av[k] |
|
|
|
ytv = {} |
|
for chi in range(0,der+1): |
|
for k in range(0,L): |
|
ctx.prec = ywptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
ytv[chi,k,ell] = ytcoef[chi,k,ell]* av[k] |
|
|
|
|
|
|
|
xterm = {} |
|
for chi in range(0,der+1): |
|
for n in range(0,L): |
|
ctx.prec = xwpterm[n] |
|
te = 0 |
|
for k in range(0, 3*n//2+1): |
|
te += xtv[chi,n,k] |
|
xterm[chi,n] = te |
|
|
|
|
|
|
|
yterm = {} |
|
for chi in range(0,der+1): |
|
for n in range(0,L): |
|
ctx.prec = ywpterm[n] |
|
te = 0 |
|
for k in range(0, 3*n//2+1): |
|
te += ytv[chi,n,k] |
|
yterm[chi,n] = te |
|
|
|
|
|
|
|
xrssum={} |
|
ctx.prec=15 |
|
xrsbound = math.sqrt(ctx.pi) * xc /(xb*a) |
|
ctx.prec=15 |
|
xwprssum = ctx.mag(4.4*((L+3)**2)*xrsbound / xeps2) |
|
xwprssum = max(xwprssum, ctx.mag(10*(L+1))) |
|
ctx.prec = xwprssum |
|
for chi in range(0,der+1): |
|
xrssum[chi] = 0 |
|
for k in range(1,L+1): |
|
xrssum[chi] += xterm[chi,L-k] |
|
yrssum={} |
|
ctx.prec=15 |
|
yrsbound = math.sqrt(ctx.pi) * yc /(yb*a) |
|
ctx.prec=15 |
|
ywprssum = ctx.mag(4.4*((L+3)**2)*yrsbound / yeps2) |
|
ywprssum = max(ywprssum, ctx.mag(10*(L+1))) |
|
ctx.prec = ywprssum |
|
for chi in range(0,der+1): |
|
yrssum[chi] = 0 |
|
for k in range(1,L+1): |
|
yrssum[chi] += yterm[chi,L-k] |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
A2 = 2**(max(ctx.mag(abs(xrssum[0])), ctx.mag(abs(yrssum[0])))) |
|
eps8 = eps/(3*A2) |
|
T = t *ctx.ln(t/(2*ctx.pi)) |
|
xwps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-xsigma))*T) |
|
ywps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-ysigma))*T) |
|
|
|
ctx.prec = max(xwps3, ywps3) |
|
|
|
tpi = t/(2*ctx.pi) |
|
arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 |
|
U = ctx.expj(-arg) |
|
a = trunc_a(t) |
|
xasigma = ctx.power(a, -xsigma) |
|
yasigma = ctx.power(a, -ysigma) |
|
xS3 = ((-1)**(N-1)) * xasigma * U |
|
yS3 = ((-1)**(N-1)) * yasigma * U |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
xwpsum = 4+ ctx.mag((N+ctx.power(N,1-xsigma))*ctx.ln(N) /eps1) |
|
ywpsum = 4+ ctx.mag((N+ctx.power(N,1-ysigma))*ctx.ln(N) /eps1) |
|
wpsum = max(xwpsum, ywpsum) |
|
|
|
ctx.prec = wpsum +10 |
|
''' |
|
# This can be improved |
|
xS1={} |
|
yS1={} |
|
for chi in range(0,der+1): |
|
xS1[chi] = 0 |
|
yS1[chi] = 0 |
|
for n in range(1,int(N)+1): |
|
ln = ctx.ln(n) |
|
xexpn = ctx.exp(-ln*(xsigma+ctx.j*t)) |
|
yexpn = ctx.conj(1/(n*xexpn)) |
|
for chi in range(0,der+1): |
|
pown = ctx.power(-ln, chi) |
|
xterm = pown*xexpn |
|
yterm = pown*yexpn |
|
xS1[chi] += xterm |
|
yS1[chi] += yterm |
|
''' |
|
xS1, yS1 = ctx._zetasum(s, 1, int(N)-1, range(0,der+1), True) |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
xabsS1 = abs(xS1[der]) |
|
xabsS2 = abs(xrssum[der] * xS3) |
|
xwpend = max(6, wpinitial+ctx.mag(6*(3*xabsS1+7*xabsS2) ) ) |
|
|
|
ctx.prec = xwpend |
|
xrz={} |
|
for chi in range(0,der+1): |
|
xrz[chi] = xS1[chi]+xrssum[chi]*xS3 |
|
|
|
ctx.prec = 15 |
|
yabsS1 = abs(yS1[der]) |
|
yabsS2 = abs(yrssum[der] * yS3) |
|
ywpend = max(6, wpinitial+ctx.mag(6*(3*yabsS1+7*yabsS2) ) ) |
|
|
|
ctx.prec = ywpend |
|
yrz={} |
|
for chi in range(0,der+1): |
|
yrz[chi] = yS1[chi]+yrssum[chi]*yS3 |
|
yrz[chi] = ctx.conj(yrz[chi]) |
|
ctx.prec = wpinitial |
|
return xrz, yrz |
|
|
|
def Rzeta_set(ctx, s, derivatives=[0]): |
|
r""" |
|
Computes several derivatives of the auxiliary function of Riemann `R(s)`. |
|
|
|
**Definition** |
|
|
|
The function is defined by |
|
|
|
.. math :: |
|
|
|
\begin{equation} |
|
{\mathop{\mathcal R }\nolimits}(s)= |
|
\int_{0\swarrow1}\frac{x^{-s} e^{\pi i x^2}}{e^{\pi i x}- |
|
e^{-\pi i x}}\,dx |
|
\end{equation} |
|
|
|
To this function we apply the Riemann-Siegel expansion. |
|
""" |
|
der = max(derivatives) |
|
|
|
|
|
|
|
wpinitial = ctx.prec |
|
|
|
t = ctx._im(s) |
|
sigma = ctx._re(s) |
|
|
|
ctx.prec = 15 |
|
a = ctx.sqrt(t/(2*ctx.pi)) |
|
asigma = ctx.power(a, sigma) |
|
|
|
A1 = ctx.power(2, ctx.mag(asigma)-1) |
|
|
|
eps = ctx.power(2, -wpinitial) |
|
eps1 = eps/6. |
|
eps2 = eps * A1/3. |
|
|
|
|
|
|
|
|
|
|
|
ctx.prec = 15 |
|
if sigma > 0: |
|
b = 2. |
|
c = math.pow(9,sigma)/4.44288 |
|
|
|
A = math.pow(9,sigma) |
|
B1 = 1 |
|
else: |
|
b = 2.25158 |
|
c = math.pow(2,-sigma)/4.44288 |
|
A = math.pow(2,-sigma) |
|
B1 = 1.10789 |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
L = 1 |
|
while 3*c*ctx.gamma(L*0.5) * ctx.power(b*a,-L) >= eps2: |
|
L = L+1 |
|
L = max(2,L) |
|
|
|
|
|
|
|
|
|
|
|
if ((3*L >= 2*a*a/25.) or (3*L+2+sigma<0) or (abs(sigma)> a/2.)): |
|
|
|
ctx.prec = wpinitial |
|
raise NotImplementedError("Riemann-Siegel can not compute with such precision") |
|
|
|
|
|
|
|
|
|
|
|
eps3 = eps2/(4*L) |
|
|
|
|
|
|
|
|
|
eps4 = eps3/(3*L) |
|
|
|
|
|
M = aux_M_Fp(ctx, A, eps4, a, B1, L) |
|
Fp = {} |
|
for n in range(M, 3*L-2): |
|
Fp[n] = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
h1 = eps4/(632*A) |
|
h2 = ctx.pi*ctx.pi*B1*a *ctx.sqrt(3)*math.e*math.e |
|
h2 = h1 * ctx.power((h2/M**2),(M-1)/3) / M |
|
h3 = min(h1,h2) |
|
J=12 |
|
jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) |
|
while jvalue > h3: |
|
J = J+1 |
|
jvalue = (2*ctx.pi)*jvalue/J |
|
|
|
|
|
|
|
eps5={} |
|
foreps5 = math.pi*math.pi*B1*a |
|
for m in range(0,22): |
|
aux1 = math.pow(foreps5, m/3)/(316.*A) |
|
aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) |
|
aux2 = math.sqrt(aux2) |
|
eps5[m] = aux1*aux2*eps4 |
|
|
|
|
|
|
|
twenty = min(3*L-3, 21)+1 |
|
aux = 6812*J |
|
wpfp = ctx.mag(44*J) |
|
for m in range(0, twenty): |
|
wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) |
|
|
|
|
|
ctx.prec = wpfp + ctx.mag(t) + 20 |
|
a = ctx.sqrt(t/(2*ctx.pi)) |
|
N = ctx.floor(a) |
|
p = 1-2*(a-N) |
|
|
|
|
|
|
|
num = ctx.floor(p*(ctx.mpf(2)**wpfp)) |
|
difference = p * (ctx.mpf(2)**wpfp)-num |
|
if difference < 0.5: |
|
num = num |
|
else: |
|
num = num+1 |
|
p = ctx.convert(num * (ctx.mpf(2)**(-wpfp))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eps6 = ctx.power(2*ctx.pi, J)/(ctx.gamma(J+1)*3*J) |
|
|
|
|
|
cc={} |
|
cont={} |
|
cont, pipowers = coef(ctx, J, eps6) |
|
cc = cont.copy() |
|
Fp={} |
|
for n in range(M, 3*L-2): |
|
Fp[n] = 0 |
|
ctx.prec = wpfp |
|
for m in range(0,M+1): |
|
sumP = 0 |
|
for k in range(2*J-m-1,-1,-1): |
|
sumP = (sumP * p) + cc[k] |
|
Fp[m] = sumP |
|
|
|
for k in range(0, 2*J-m-1): |
|
cc[k] = (k+1) * cc[k+1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
wpd = {} |
|
d1 = max(6, ctx.mag(40*L*L)) |
|
d2 = 13+ctx.mag((1+abs(sigma))*A)-ctx.mag(eps4)-1 |
|
const = ctx.ln(8/(ctx.pi*ctx.pi*a*a*B1*B1)) /2 |
|
for n in range(0,L): |
|
d3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*const)+d2 |
|
wpd[n] = max(d3,d1) |
|
|
|
|
|
ctx.prec = wpd[1]+10 |
|
psigma = 1-(2*sigma) |
|
d = {} |
|
d[0,0,-2]=0; d[0,0,-1]=0; d[0,0,0]=1; d[0,0,1]=0 |
|
d[0,-1,-2]=0; d[0,-1,-1]=0; d[0,-1,0]=1; d[0,-1,1]=0 |
|
for n in range(1,L): |
|
ctx.prec = wpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
m = 3*n-2*k |
|
if (m!=0): |
|
m1 = ctx.one/m |
|
c1 = m1/4 |
|
c2 = (psigma*m1)/2 |
|
c3 = -(m+1) |
|
d[0,n,k] = c3*d[0,n-1,k-2]+c1*d[0,n-1,k]+c2*d[0,n-1,k-1] |
|
else: |
|
d[0,n,k]=0 |
|
for r in range(0,k): |
|
add = d[0,n,r]*(ctx.one*ctx.fac(2*k-2*r)/ctx.fac(k-r)) |
|
d[0,n,k] -= ((-1)**(k-r))*add |
|
d[0,n,-2]=0; d[0,n,-1]=0; d[0,n,3*n//2+1]=0 |
|
|
|
for mu in range(-2,der+1): |
|
for n in range(-2,L): |
|
for k in range(-3,max(1,3*n//2+2)): |
|
if ((mu<0)or (n<0) or(k<0)or (k>3*n//2)): |
|
d[mu,n,k] = 0 |
|
|
|
for mu in range(1,der+1): |
|
for n in range(0,L): |
|
ctx.prec = wpd[n]+10 |
|
for k in range(0,3*n//2+1): |
|
aux=(2*mu-2)*d[mu-2,n-2,k-3]+2*(sigma+n-2)*d[mu-1,n-2,k-3] |
|
d[mu,n,k] = aux - d[mu-1,n-1,k-1] |
|
|
|
|
|
|
|
|
|
|
|
wptcoef = {} |
|
wpterm = {} |
|
ctx.prec = 15 |
|
c1 = ctx.mag(40*(L+2)) |
|
c2 = ctx.mag(68*(L+2)*A) |
|
c4 = ctx.mag(B1*a*math.sqrt(ctx.pi))-1 |
|
for k in range(0,L): |
|
c3 = c2 - k*c4+ctx.mag(ctx.fac(k+0.5))/2. |
|
wptcoef[k] = max(c1,c3-ctx.mag(eps4)+1)+1 +10 |
|
wpterm[k] = max(c1,ctx.mag(L+2)+c3-ctx.mag(eps3)+1)+1 +10 |
|
|
|
|
|
|
|
|
|
fortcoef={} |
|
for mu in derivatives: |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
fortcoef[mu,k,ell]=0 |
|
|
|
for mu in derivatives: |
|
for k in range(0,L): |
|
ctx.prec = wptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
fortcoef[mu,k,ell]=d[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] |
|
fortcoef[mu,k,ell]=fortcoef[mu,k,ell]/((2*ctx.j)**ell) |
|
|
|
def trunc_a(t): |
|
wp = ctx.prec |
|
ctx.prec = wp + 2 |
|
aa = ctx.sqrt(t/(2*ctx.pi)) |
|
ctx.prec = wp |
|
return aa |
|
|
|
|
|
tcoef={} |
|
for chi in derivatives: |
|
for k in range(0,L): |
|
for ell in range(-2,3*k//2+1): |
|
tcoef[chi,k,ell]=0 |
|
ctx.prec = wptcoef[0]+3 |
|
aa = trunc_a(t) |
|
la = -ctx.ln(aa) |
|
|
|
for chi in derivatives: |
|
for k in range(0,L): |
|
ctx.prec = wptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
tcoef[chi,k,ell] = 0 |
|
for mu in range(0, chi+1): |
|
tcoefter = ctx.binomial(chi,mu) * la**mu * \ |
|
fortcoef[chi-mu,k,ell] |
|
tcoef[chi,k,ell] += tcoefter |
|
|
|
|
|
|
|
|
|
|
|
ctx.prec = wptcoef[0] + 2 |
|
|
|
|
|
|
|
av = {} |
|
av[0] = 1 |
|
av[1] = av[0]/a |
|
|
|
ctx.prec = wptcoef[0] |
|
for k in range(2,L): |
|
av[k] = av[k-1] * av[1] |
|
|
|
|
|
tv = {} |
|
for chi in derivatives: |
|
for k in range(0,L): |
|
ctx.prec = wptcoef[k] |
|
for ell in range(0,3*k//2+1): |
|
tv[chi,k,ell] = tcoef[chi,k,ell]* av[k] |
|
|
|
|
|
|
|
term = {} |
|
for chi in derivatives: |
|
for n in range(0,L): |
|
ctx.prec = wpterm[n] |
|
te = 0 |
|
for k in range(0, 3*n//2+1): |
|
te += tv[chi,n,k] |
|
term[chi,n] = te |
|
|
|
|
|
|
|
rssum={} |
|
ctx.prec=15 |
|
rsbound = math.sqrt(ctx.pi) * c /(b*a) |
|
ctx.prec=15 |
|
wprssum = ctx.mag(4.4*((L+3)**2)*rsbound / eps2) |
|
wprssum = max(wprssum, ctx.mag(10*(L+1))) |
|
ctx.prec = wprssum |
|
for chi in derivatives: |
|
rssum[chi] = 0 |
|
for k in range(1,L+1): |
|
rssum[chi] += term[chi,L-k] |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
A2 = 2**(ctx.mag(rssum[0])) |
|
eps8 = eps/(3* A2) |
|
T = t * ctx.ln(t/(2*ctx.pi)) |
|
wps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-sigma))*T) |
|
|
|
ctx.prec = wps3 |
|
tpi = t/(2*ctx.pi) |
|
arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 |
|
U = ctx.expj(-arg) |
|
a = trunc_a(t) |
|
asigma = ctx.power(a, -sigma) |
|
S3 = ((-1)**(N-1)) * asigma * U |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
wpsum = 4 + ctx.mag((N+ctx.power(N,1-sigma))*ctx.ln(N)/eps1) |
|
|
|
ctx.prec = wpsum + 10 |
|
''' |
|
# This can be improved |
|
S1 = {} |
|
for chi in derivatives: |
|
S1[chi] = 0 |
|
for n in range(1,int(N)+1): |
|
ln = ctx.ln(n) |
|
expn = ctx.exp(-ln*(sigma+ctx.j*t)) |
|
for chi in derivatives: |
|
term = ctx.power(-ln, chi)*expn |
|
S1[chi] += term |
|
''' |
|
S1 = ctx._zetasum(s, 1, int(N)-1, derivatives)[0] |
|
|
|
|
|
|
|
ctx.prec = 15 |
|
absS1 = abs(S1[der]) |
|
absS2 = abs(rssum[der] * S3) |
|
wpend = max(6, wpinitial + ctx.mag(6*(3*absS1+7*absS2))) |
|
ctx.prec = wpend |
|
rz = {} |
|
for chi in derivatives: |
|
rz[chi] = S1[chi]+rssum[chi]*S3 |
|
ctx.prec = wpinitial |
|
return rz |
|
|
|
|
|
def z_half(ctx,t,der=0): |
|
r""" |
|
z_half(t,der=0) Computes Z^(der)(t) |
|
""" |
|
s=ctx.mpf('0.5')+ctx.j*t |
|
wpinitial = ctx.prec |
|
ctx.prec = 15 |
|
tt = t/(2*ctx.pi) |
|
wptheta = wpinitial +1 + ctx.mag(3*(tt**1.5)*ctx.ln(tt)) |
|
wpz = wpinitial + 1 + ctx.mag(12*tt*ctx.ln(tt)) |
|
ctx.prec = wptheta |
|
theta = ctx.siegeltheta(t) |
|
ctx.prec = wpz |
|
rz = Rzeta_set(ctx,s, range(der+1)) |
|
if der > 0: ps1 = ctx._re(ctx.psi(0,s/2)/2 - ctx.ln(ctx.pi)/2) |
|
if der > 1: ps2 = ctx._re(ctx.j*ctx.psi(1,s/2)/4) |
|
if der > 2: ps3 = ctx._re(-ctx.psi(2,s/2)/8) |
|
if der > 3: ps4 = ctx._re(-ctx.j*ctx.psi(3,s/2)/16) |
|
exptheta = ctx.expj(theta) |
|
if der == 0: |
|
z = 2*exptheta*rz[0] |
|
if der == 1: |
|
zf = 2j*exptheta |
|
z = zf*(ps1*rz[0]+rz[1]) |
|
if der == 2: |
|
zf = 2 * exptheta |
|
z = -zf*(2*rz[1]*ps1+rz[0]*ps1**2+rz[2]-ctx.j*rz[0]*ps2) |
|
if der == 3: |
|
zf = -2j*exptheta |
|
z = 3*rz[1]*ps1**2+rz[0]*ps1**3+3*ps1*rz[2] |
|
z = zf*(z-3j*rz[1]*ps2-3j*rz[0]*ps1*ps2+rz[3]-rz[0]*ps3) |
|
if der == 4: |
|
zf = 2*exptheta |
|
z = 4*rz[1]*ps1**3+rz[0]*ps1**4+6*ps1**2*rz[2] |
|
z = z-12j*rz[1]*ps1*ps2-6j*rz[0]*ps1**2*ps2-6j*rz[2]*ps2-3*rz[0]*ps2*ps2 |
|
z = z + 4*ps1*rz[3]-4*rz[1]*ps3-4*rz[0]*ps1*ps3+rz[4]+ctx.j*rz[0]*ps4 |
|
z = zf*z |
|
ctx.prec = wpinitial |
|
return ctx._re(z) |
|
|
|
def zeta_half(ctx, s, k=0): |
|
""" |
|
zeta_half(s,k=0) Computes zeta^(k)(s) when Re s = 0.5 |
|
""" |
|
wpinitial = ctx.prec |
|
sigma = ctx._re(s) |
|
t = ctx._im(s) |
|
|
|
ctx.prec = 53 |
|
|
|
if sigma > 0: |
|
X = ctx.sqrt(abs(s)) |
|
else: |
|
X = (2*ctx.pi)**(sigma-1) * abs(1-s)**(0.5-sigma) |
|
|
|
if sigma > 0: |
|
M1 = 2*ctx.sqrt(t/(2*ctx.pi)) |
|
else: |
|
M1 = 4 * t * X |
|
|
|
abst = abs(0.5-s) |
|
T = 2* abst*math.log(abst) |
|
|
|
wpbasic = max(6,3+ctx.mag(t)) |
|
wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M1*X+1.3*M1*X*T)+wpinitial+1 |
|
wpbasic = max(wpbasic, wpbasic2) |
|
wptheta = max(4, 3+ctx.mag(2.7*M1*X)+wpinitial+1) |
|
wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 |
|
ctx.prec = wptheta |
|
theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) |
|
if k > 0: ps1 = (ctx._re(ctx.psi(0,s/2)))/2 - ctx.ln(ctx.pi)/2 |
|
if k > 1: ps2 = -(ctx._im(ctx.psi(1,s/2)))/4 |
|
if k > 2: ps3 = -(ctx._re(ctx.psi(2,s/2)))/8 |
|
if k > 3: ps4 = (ctx._im(ctx.psi(3,s/2)))/16 |
|
ctx.prec = wpR |
|
xrz = Rzeta_set(ctx,s,range(k+1)) |
|
yrz={} |
|
for chi in range(0,k+1): |
|
yrz[chi] = ctx.conj(xrz[chi]) |
|
ctx.prec = wpbasic |
|
exptheta = ctx.expj(-2*theta) |
|
if k==0: |
|
zv = xrz[0]+exptheta*yrz[0] |
|
if k==1: |
|
zv1 = -yrz[1] - 2*yrz[0]*ps1 |
|
zv = xrz[1] + exptheta*zv1 |
|
if k==2: |
|
zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2)+yrz[2]+2j*yrz[0]*ps2 |
|
zv = xrz[2]+exptheta*zv1 |
|
if k==3: |
|
zv1 = -12*yrz[1]*ps1**2-8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 |
|
zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 |
|
zv = xrz[3]+exptheta*zv1 |
|
if k == 4: |
|
zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 |
|
zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 |
|
zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 |
|
zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 |
|
zv = xrz[4]+exptheta*zv1 |
|
ctx.prec = wpinitial |
|
return zv |
|
|
|
def zeta_offline(ctx, s, k=0): |
|
""" |
|
Computes zeta^(k)(s) off the line |
|
""" |
|
wpinitial = ctx.prec |
|
sigma = ctx._re(s) |
|
t = ctx._im(s) |
|
|
|
ctx.prec = 53 |
|
|
|
if sigma > 0: |
|
X = ctx.power(abs(s), 0.5) |
|
else: |
|
X = ctx.power(2*ctx.pi, sigma-1)*ctx.power(abs(1-s),0.5-sigma) |
|
|
|
if (sigma > 0): |
|
M1 = 2*ctx.sqrt(t/(2*ctx.pi)) |
|
else: |
|
M1 = 4 * t * X |
|
|
|
if (1-sigma > 0): |
|
M2 = 2*ctx.sqrt(t/(2*ctx.pi)) |
|
else: |
|
M2 = 4*t*ctx.power(2*ctx.pi, -sigma)*ctx.power(abs(s),sigma-0.5) |
|
|
|
abst = abs(0.5-s) |
|
T = 2* abst*math.log(abst) |
|
|
|
wpbasic = max(6,3+ctx.mag(t)) |
|
wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M2*X+1.3*M2*X*T)+wpinitial+1 |
|
wpbasic = max(wpbasic, wpbasic2) |
|
wptheta = max(4, 3+ctx.mag(2.7*M2*X)+wpinitial+1) |
|
wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 |
|
ctx.prec = wptheta |
|
theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) |
|
s1 = s |
|
s2 = ctx.conj(1-s1) |
|
ctx.prec = wpR |
|
xrz, yrz = Rzeta_simul(ctx, s, k) |
|
if k > 0: ps1 = (ctx.psi(0,s1/2)+ctx.psi(0,(1-s1)/2))/4 - ctx.ln(ctx.pi)/2 |
|
if k > 1: ps2 = ctx.j*(ctx.psi(1,s1/2)-ctx.psi(1,(1-s1)/2))/8 |
|
if k > 2: ps3 = -(ctx.psi(2,s1/2)+ctx.psi(2,(1-s1)/2))/16 |
|
if k > 3: ps4 = -ctx.j*(ctx.psi(3,s1/2)-ctx.psi(3,(1-s1)/2))/32 |
|
ctx.prec = wpbasic |
|
exptheta = ctx.expj(-2*theta) |
|
if k == 0: |
|
zv = xrz[0]+exptheta*yrz[0] |
|
if k == 1: |
|
zv1 = -yrz[1]-2*yrz[0]*ps1 |
|
zv = xrz[1]+exptheta*zv1 |
|
if k == 2: |
|
zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2) +yrz[2]+2j*yrz[0]*ps2 |
|
zv = xrz[2]+exptheta*zv1 |
|
if k == 3: |
|
zv1 = -12*yrz[1]*ps1**2 -8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 |
|
zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 |
|
zv = xrz[3]+exptheta*zv1 |
|
if k == 4: |
|
zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 |
|
zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 |
|
zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 |
|
zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 |
|
zv = xrz[4]+exptheta*zv1 |
|
ctx.prec = wpinitial |
|
return zv |
|
|
|
def z_offline(ctx, w, k=0): |
|
r""" |
|
Computes Z(w) and its derivatives off the line |
|
""" |
|
s = ctx.mpf('0.5')+ctx.j*w |
|
s1 = s |
|
s2 = ctx.conj(1-s1) |
|
wpinitial = ctx.prec |
|
ctx.prec = 35 |
|
|
|
|
|
if (ctx._re(s1) >= 0): |
|
M1 = 2*ctx.sqrt(ctx._im(s1)/(2 * ctx.pi)) |
|
X = ctx.sqrt(abs(s1)) |
|
else: |
|
X = (2*ctx.pi)**(ctx._re(s1)-1) * abs(1-s1)**(0.5-ctx._re(s1)) |
|
M1 = 4 * ctx._im(s1)*X |
|
|
|
if (ctx._re(s2) >= 0): |
|
M2 = 2*ctx.sqrt(ctx._im(s2)/(2 * ctx.pi)) |
|
else: |
|
M2 = 4 * ctx._im(s2)*(2*ctx.pi)**(ctx._re(s2)-1)*abs(1-s2)**(0.5-ctx._re(s2)) |
|
|
|
T = 2*abs(ctx.siegeltheta(w)) |
|
|
|
|
|
aux1 = ctx.sqrt(X) |
|
aux2 = aux1*(M1+M2) |
|
aux3 = 3 +wpinitial |
|
wpbasic = max(6, 3+ctx.mag(T), ctx.mag(aux2*(26+2*T))+aux3) |
|
wptheta = max(4,ctx.mag(2.04*aux2)+aux3) |
|
wpR = ctx.mag(4*aux1)+aux3 |
|
|
|
ctx.prec = wptheta |
|
theta = ctx.siegeltheta(w) |
|
ctx.prec = wpR |
|
xrz, yrz = Rzeta_simul(ctx,s,k) |
|
pta = 0.25 + 0.5j*w |
|
ptb = 0.25 - 0.5j*w |
|
if k > 0: ps1 = 0.25*(ctx.psi(0,pta)+ctx.psi(0,ptb)) - ctx.ln(ctx.pi)/2 |
|
if k > 1: ps2 = (1j/8)*(ctx.psi(1,pta)-ctx.psi(1,ptb)) |
|
if k > 2: ps3 = (-1./16)*(ctx.psi(2,pta)+ctx.psi(2,ptb)) |
|
if k > 3: ps4 = (-1j/32)*(ctx.psi(3,pta)-ctx.psi(3,ptb)) |
|
ctx.prec = wpbasic |
|
exptheta = ctx.expj(theta) |
|
if k == 0: |
|
zv = exptheta*xrz[0]+yrz[0]/exptheta |
|
j = ctx.j |
|
if k == 1: |
|
zv = j*exptheta*(xrz[1]+xrz[0]*ps1)-j*(yrz[1]+yrz[0]*ps1)/exptheta |
|
if k == 2: |
|
zv = exptheta*(-2*xrz[1]*ps1-xrz[0]*ps1**2-xrz[2]+j*xrz[0]*ps2) |
|
zv =zv + (-2*yrz[1]*ps1-yrz[0]*ps1**2-yrz[2]-j*yrz[0]*ps2)/exptheta |
|
if k == 3: |
|
zv1 = -3*xrz[1]*ps1**2-xrz[0]*ps1**3-3*xrz[2]*ps1+j*3*xrz[1]*ps2 |
|
zv1 = (zv1+ 3j*xrz[0]*ps1*ps2-xrz[3]+xrz[0]*ps3)*j*exptheta |
|
zv2 = 3*yrz[1]*ps1**2+yrz[0]*ps1**3+3*yrz[2]*ps1+j*3*yrz[1]*ps2 |
|
zv2 = j*(zv2 + 3j*yrz[0]*ps1*ps2+ yrz[3]-yrz[0]*ps3)/exptheta |
|
zv = zv1+zv2 |
|
if k == 4: |
|
zv1 = 4*xrz[1]*ps1**3+xrz[0]*ps1**4 + 6*xrz[2]*ps1**2 |
|
zv1 = zv1-12j*xrz[1]*ps1*ps2-6j*xrz[0]*ps1**2*ps2-6j*xrz[2]*ps2 |
|
zv1 = zv1-3*xrz[0]*ps2*ps2+4*xrz[3]*ps1-4*xrz[1]*ps3-4*xrz[0]*ps1*ps3 |
|
zv1 = zv1+xrz[4]+j*xrz[0]*ps4 |
|
zv2 = 4*yrz[1]*ps1**3+yrz[0]*ps1**4 + 6*yrz[2]*ps1**2 |
|
zv2 = zv2+12j*yrz[1]*ps1*ps2+6j*yrz[0]*ps1**2*ps2+6j*yrz[2]*ps2 |
|
zv2 = zv2-3*yrz[0]*ps2*ps2+4*yrz[3]*ps1-4*yrz[1]*ps3-4*yrz[0]*ps1*ps3 |
|
zv2 = zv2+yrz[4]-j*yrz[0]*ps4 |
|
zv = exptheta*zv1+zv2/exptheta |
|
ctx.prec = wpinitial |
|
return zv |
|
|
|
@defun |
|
def rs_zeta(ctx, s, derivative=0, **kwargs): |
|
if derivative > 4: |
|
raise NotImplementedError |
|
s = ctx.convert(s) |
|
re = ctx._re(s); im = ctx._im(s) |
|
if im < 0: |
|
z = ctx.conj(ctx.rs_zeta(ctx.conj(s), derivative)) |
|
return z |
|
critical_line = (re == 0.5) |
|
if critical_line: |
|
return zeta_half(ctx, s, derivative) |
|
else: |
|
return zeta_offline(ctx, s, derivative) |
|
|
|
@defun |
|
def rs_z(ctx, w, derivative=0): |
|
w = ctx.convert(w) |
|
re = ctx._re(w); im = ctx._im(w) |
|
if re < 0: |
|
return rs_z(ctx, -w, derivative) |
|
critical_line = (im == 0) |
|
if critical_line : |
|
return z_half(ctx, w, derivative) |
|
else: |
|
return z_offline(ctx, w, derivative) |
|
|