|
from .functions import defun, defun_wrapped |
|
|
|
@defun |
|
def _jacobi_theta2(ctx, z, q): |
|
extra1 = 10 |
|
extra2 = 20 |
|
|
|
|
|
|
|
|
|
MIN = 2 |
|
if z == ctx.zero: |
|
if (not ctx._im(q)): |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
x2 = (x*x) >> wp |
|
a = b = x2 |
|
s = x2 |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
s += a |
|
s = (1 << (wp+1)) + (s << 1) |
|
s = ctx.ldexp(s, -wp) |
|
else: |
|
wp = ctx.prec + extra1 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp-1) |
|
are = bre = x2re |
|
aim = bim = x2im |
|
sre = (1<<wp) + are |
|
sim = aim |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
sre += are |
|
sim += aim |
|
sre = (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
else: |
|
if (not ctx._im(q)) and (not ctx._im(z)): |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
x2 = (x*x) >> wp |
|
a = b = x2 |
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) |
|
cn = c1 = ctx.to_fixed(c1, wp) |
|
sn = s1 = ctx.to_fixed(s1, wp) |
|
c2 = (c1*c1 - s1*s1) >> wp |
|
s2 = (c1 * s1) >> (wp - 1) |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
s = c1 + ((a * cn) >> wp) |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
s += (a * cn) >> wp |
|
s = (s << 1) |
|
s = ctx.ldexp(s, -wp) |
|
s *= ctx.nthroot(q, 4) |
|
return s |
|
|
|
elif not ctx._im(z): |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = x2re |
|
aim = bim = x2im |
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) |
|
cn = c1 = ctx.to_fixed(c1, wp) |
|
sn = s1 = ctx.to_fixed(s1, wp) |
|
c2 = (c1*c1 - s1*s1) >> wp |
|
s2 = (c1 * s1) >> (wp - 1) |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
sre = c1 + ((are * cn) >> wp) |
|
sim = ((aim * cn) >> wp) |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
sre += ((are * cn) >> wp) |
|
sim += ((aim * cn) >> wp) |
|
sre = (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
elif not ctx._im(q): |
|
wp = ctx.prec + extra2 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
x2 = (x*x) >> wp |
|
a = b = x2 |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
c1, s1 = ctx.cos_sin(z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp |
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) |
|
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) |
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) |
|
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
sre = c1re + ((a * cnre) >> wp) |
|
sim = c1im + ((a * cnim) >> wp) |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
sre += ((a * cnre) >> wp) |
|
sim += ((a * cnim) >> wp) |
|
sre = (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
else: |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = x2re |
|
aim = bim = x2im |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
|
|
c1, s1 = ctx.cos_sin(z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp |
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) |
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) |
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) |
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
n = 1 |
|
termre = c1re |
|
termim = c1im |
|
sre = c1re + ((are * cnre - aim * cnim) >> wp) |
|
sim = c1im + ((are * cnim + aim * cnre) >> wp) |
|
n = 3 |
|
termre = ((are * cnre - aim * cnim) >> wp) |
|
termim = ((are * cnim + aim * cnre) >> wp) |
|
sre = c1re + ((are * cnre - aim * cnim) >> wp) |
|
sim = c1im + ((are * cnim + aim * cnre) >> wp) |
|
n = 5 |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
termre = ((are * cnre - aim * cnim) >> wp) |
|
termim = ((aim * cnre + are * cnim) >> wp) |
|
sre += ((are * cnre - aim * cnim) >> wp) |
|
sim += ((aim * cnre + are * cnim) >> wp) |
|
n += 2 |
|
sre = (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
s *= ctx.nthroot(q, 4) |
|
return s |
|
|
|
@defun |
|
def _djacobi_theta2(ctx, z, q, nd): |
|
MIN = 2 |
|
extra1 = 10 |
|
extra2 = 20 |
|
if (not ctx._im(q)) and (not ctx._im(z)): |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
x2 = (x*x) >> wp |
|
a = b = x2 |
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) |
|
cn = c1 = ctx.to_fixed(c1, wp) |
|
sn = s1 = ctx.to_fixed(s1, wp) |
|
c2 = (c1*c1 - s1*s1) >> wp |
|
s2 = (c1 * s1) >> (wp - 1) |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
if (nd&1): |
|
s = s1 + ((a * sn * 3**nd) >> wp) |
|
else: |
|
s = c1 + ((a * cn * 3**nd) >> wp) |
|
n = 2 |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
if nd&1: |
|
s += (a * sn * (2*n+1)**nd) >> wp |
|
else: |
|
s += (a * cn * (2*n+1)**nd) >> wp |
|
n += 1 |
|
s = -(s << 1) |
|
s = ctx.ldexp(s, -wp) |
|
|
|
elif not ctx._im(z): |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = x2re |
|
aim = bim = x2im |
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) |
|
cn = c1 = ctx.to_fixed(c1, wp) |
|
sn = s1 = ctx.to_fixed(s1, wp) |
|
c2 = (c1*c1 - s1*s1) >> wp |
|
s2 = (c1 * s1) >> (wp - 1) |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
if (nd&1): |
|
sre = s1 + ((are * sn * 3**nd) >> wp) |
|
sim = ((aim * sn * 3**nd) >> wp) |
|
else: |
|
sre = c1 + ((are * cn * 3**nd) >> wp) |
|
sim = ((aim * cn * 3**nd) >> wp) |
|
n = 5 |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp |
|
|
|
if (nd&1): |
|
sre += ((are * sn * n**nd) >> wp) |
|
sim += ((aim * sn * n**nd) >> wp) |
|
else: |
|
sre += ((are * cn * n**nd) >> wp) |
|
sim += ((aim * cn * n**nd) >> wp) |
|
n += 2 |
|
sre = -(sre << 1) |
|
sim = -(sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
elif not ctx._im(q): |
|
wp = ctx.prec + extra2 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
x2 = (x*x) >> wp |
|
a = b = x2 |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
c1, s1 = ctx.cos_sin(z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp |
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) |
|
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) |
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) |
|
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if (nd&1): |
|
sre = s1re + ((a * snre * 3**nd) >> wp) |
|
sim = s1im + ((a * snim * 3**nd) >> wp) |
|
else: |
|
sre = c1re + ((a * cnre * 3**nd) >> wp) |
|
sim = c1im + ((a * cnim * 3**nd) >> wp) |
|
n = 5 |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if (nd&1): |
|
sre += ((a * snre * n**nd) >> wp) |
|
sim += ((a * snim * n**nd) >> wp) |
|
else: |
|
sre += ((a * cnre * n**nd) >> wp) |
|
sim += ((a * cnim * n**nd) >> wp) |
|
n += 2 |
|
sre = -(sre << 1) |
|
sim = -(sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
else: |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = x2re |
|
aim = bim = x2im |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
|
|
c1, s1 = ctx.cos_sin(z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp |
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) |
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) |
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) |
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if (nd&1): |
|
sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) |
|
sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) |
|
else: |
|
sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) |
|
sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) |
|
n = 5 |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp |
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp |
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp |
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if (nd&1): |
|
sre += (((are * snre - aim * snim) * n**nd) >> wp) |
|
sim += (((aim * snre + are * snim) * n**nd) >> wp) |
|
else: |
|
sre += (((are * cnre - aim * cnim) * n**nd) >> wp) |
|
sim += (((aim * cnre + are * cnim) * n**nd) >> wp) |
|
n += 2 |
|
sre = -(sre << 1) |
|
sim = -(sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
s *= ctx.nthroot(q, 4) |
|
if (nd&1): |
|
return (-1)**(nd//2) * s |
|
else: |
|
return (-1)**(1 + nd//2) * s |
|
|
|
@defun |
|
def _jacobi_theta3(ctx, z, q): |
|
extra1 = 10 |
|
extra2 = 20 |
|
MIN = 2 |
|
if z == ctx.zero: |
|
if not ctx._im(q): |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
s = x |
|
a = b = x |
|
x2 = (x*x) >> wp |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
s += a |
|
s = (1 << wp) + (s << 1) |
|
s = ctx.ldexp(s, -wp) |
|
return s |
|
else: |
|
wp = ctx.prec + extra1 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
sre = are = bre = xre |
|
sim = aim = bim = xim |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
sre += are |
|
sim += aim |
|
sre = (1 << wp) + (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
return s |
|
else: |
|
if (not ctx._im(q)) and (not ctx._im(z)): |
|
s = 0 |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
a = b = x |
|
x2 = (x*x) >> wp |
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) |
|
c1 = ctx.to_fixed(c1, wp) |
|
s1 = ctx.to_fixed(s1, wp) |
|
cn = c1 |
|
sn = s1 |
|
s += (a * cn) >> wp |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp |
|
s += (a * cn) >> wp |
|
s = (1 << wp) + (s << 1) |
|
s = ctx.ldexp(s, -wp) |
|
return s |
|
|
|
elif not ctx._im(z): |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = xre |
|
aim = bim = xim |
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) |
|
c1 = ctx.to_fixed(c1, wp) |
|
s1 = ctx.to_fixed(s1, wp) |
|
cn = c1 |
|
sn = s1 |
|
sre = (are * cn) >> wp |
|
sim = (aim * cn) >> wp |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp |
|
sre += (are * cn) >> wp |
|
sim += (aim * cn) >> wp |
|
sre = (1 << wp) + (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
return s |
|
|
|
elif not ctx._im(q): |
|
wp = ctx.prec + extra2 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
a = b = x |
|
x2 = (x*x) >> wp |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
c1, s1 = ctx.cos_sin(2*z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
sre = (a * cnre) >> wp |
|
sim = (a * cnim) >> wp |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp |
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp |
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp |
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
sre += (a * cnre) >> wp |
|
sim += (a * cnim) >> wp |
|
sre = (1 << wp) + (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
return s |
|
|
|
else: |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = xre |
|
aim = bim = xim |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
|
|
c1, s1 = ctx.cos_sin(2*z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
sre = (are * cnre - aim * cnim) >> wp |
|
sim = (aim * cnre + are * cnim) >> wp |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp |
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp |
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp |
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
sre += (are * cnre - aim * cnim) >> wp |
|
sim += (aim * cnre + are * cnim) >> wp |
|
sre = (1 << wp) + (sre << 1) |
|
sim = (sim << 1) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
return s |
|
|
|
@defun |
|
def _djacobi_theta3(ctx, z, q, nd): |
|
"""nd=1,2,3 order of the derivative with respect to z""" |
|
MIN = 2 |
|
extra1 = 10 |
|
extra2 = 20 |
|
if (not ctx._im(q)) and (not ctx._im(z)): |
|
s = 0 |
|
wp = ctx.prec + extra1 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
a = b = x |
|
x2 = (x*x) >> wp |
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) |
|
c1 = ctx.to_fixed(c1, wp) |
|
s1 = ctx.to_fixed(s1, wp) |
|
cn = c1 |
|
sn = s1 |
|
if (nd&1): |
|
s += (a * sn) >> wp |
|
else: |
|
s += (a * cn) >> wp |
|
n = 2 |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp |
|
if nd&1: |
|
s += (a * sn * n**nd) >> wp |
|
else: |
|
s += (a * cn * n**nd) >> wp |
|
n += 1 |
|
s = -(s << (nd+1)) |
|
s = ctx.ldexp(s, -wp) |
|
|
|
elif not ctx._im(z): |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = xre |
|
aim = bim = xim |
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) |
|
c1 = ctx.to_fixed(c1, wp) |
|
s1 = ctx.to_fixed(s1, wp) |
|
cn = c1 |
|
sn = s1 |
|
if (nd&1): |
|
sre = (are * sn) >> wp |
|
sim = (aim * sn) >> wp |
|
else: |
|
sre = (are * cn) >> wp |
|
sim = (aim * cn) >> wp |
|
n = 2 |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp |
|
if nd&1: |
|
sre += (are * sn * n**nd) >> wp |
|
sim += (aim * sn * n**nd) >> wp |
|
else: |
|
sre += (are * cn * n**nd) >> wp |
|
sim += (aim * cn * n**nd) >> wp |
|
n += 1 |
|
sre = -(sre << (nd+1)) |
|
sim = -(sim << (nd+1)) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
elif not ctx._im(q): |
|
wp = ctx.prec + extra2 |
|
x = ctx.to_fixed(ctx._re(q), wp) |
|
a = b = x |
|
x2 = (x*x) >> wp |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
c1, s1 = ctx.cos_sin(2*z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
if (nd&1): |
|
sre = (a * snre) >> wp |
|
sim = (a * snim) >> wp |
|
else: |
|
sre = (a * cnre) >> wp |
|
sim = (a * cnim) >> wp |
|
n = 2 |
|
while abs(a) > MIN: |
|
b = (b*x2) >> wp |
|
a = (a*b) >> wp |
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp |
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp |
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp |
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if (nd&1): |
|
sre += (a * snre * n**nd) >> wp |
|
sim += (a * snim * n**nd) >> wp |
|
else: |
|
sre += (a * cnre * n**nd) >> wp |
|
sim += (a * cnim * n**nd) >> wp |
|
n += 1 |
|
sre = -(sre << (nd+1)) |
|
sim = -(sim << (nd+1)) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
|
|
else: |
|
wp = ctx.prec + extra2 |
|
xre = ctx.to_fixed(ctx._re(q), wp) |
|
xim = ctx.to_fixed(ctx._im(q), wp) |
|
x2re = (xre*xre - xim*xim) >> wp |
|
x2im = (xre*xim) >> (wp - 1) |
|
are = bre = xre |
|
aim = bim = xim |
|
prec0 = ctx.prec |
|
ctx.prec = wp |
|
|
|
c1, s1 = ctx.cos_sin(2*z) |
|
ctx.prec = prec0 |
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) |
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) |
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp) |
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp) |
|
if (nd&1): |
|
sre = (are * snre - aim * snim) >> wp |
|
sim = (aim * snre + are * snim) >> wp |
|
else: |
|
sre = (are * cnre - aim * cnim) >> wp |
|
sim = (aim * cnre + are * cnim) >> wp |
|
n = 2 |
|
while are**2 + aim**2 > MIN: |
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \ |
|
(bre * x2im + bim * x2re) >> wp |
|
are, aim = (are * bre - aim * bim) >> wp, \ |
|
(are * bim + aim * bre) >> wp |
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp |
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp |
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp |
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp |
|
cnre = t1 |
|
cnim = t2 |
|
snre = t3 |
|
snim = t4 |
|
if(nd&1): |
|
sre += ((are * snre - aim * snim) * n**nd) >> wp |
|
sim += ((aim * snre + are * snim) * n**nd) >> wp |
|
else: |
|
sre += ((are * cnre - aim * cnim) * n**nd) >> wp |
|
sim += ((aim * cnre + are * cnim) * n**nd) >> wp |
|
n += 1 |
|
sre = -(sre << (nd+1)) |
|
sim = -(sim << (nd+1)) |
|
sre = ctx.ldexp(sre, -wp) |
|
sim = ctx.ldexp(sim, -wp) |
|
s = ctx.mpc(sre, sim) |
|
if (nd&1): |
|
return (-1)**(nd//2) * s |
|
else: |
|
return (-1)**(1 + nd//2) * s |
|
|
|
@defun |
|
def _jacobi_theta2a(ctx, z, q): |
|
""" |
|
case ctx._im(z) != 0 |
|
theta(2, z, q) = |
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf) |
|
max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z) |
|
n0 = int(ctx._im(z)/log(q).real - 1/2) |
|
theta(2, z, q) = |
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) + |
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf) |
|
""" |
|
n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) |
|
e2 = ctx.expj(2*z) |
|
e = e0 = ctx.expj((2*n+1)*z) |
|
a = q**(n*n + n) |
|
|
|
term = a * e |
|
s = term |
|
eps1 = ctx.eps*abs(term) |
|
while 1: |
|
n += 1 |
|
e = e * e2 |
|
term = q**(n*n + n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
e = e0 |
|
e2 = ctx.expj(-2*z) |
|
n = n0 |
|
while 1: |
|
n -= 1 |
|
e = e * e2 |
|
term = q**(n*n + n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
s = s * ctx.nthroot(q, 4) |
|
return s |
|
|
|
@defun |
|
def _jacobi_theta3a(ctx, z, q): |
|
""" |
|
case ctx._im(z) != 0 |
|
theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf) |
|
max term for n*abs(log(q).real) + ctx._im(z) ~= 0 |
|
n0 = int(- ctx._im(z)/abs(log(q).real)) |
|
""" |
|
n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) |
|
e2 = ctx.expj(2*z) |
|
e = e0 = ctx.expj(2*n*z) |
|
s = term = q**(n*n) * e |
|
eps1 = ctx.eps*abs(term) |
|
while 1: |
|
n += 1 |
|
e = e * e2 |
|
term = q**(n*n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
e = e0 |
|
e2 = ctx.expj(-2*z) |
|
n = n0 |
|
while 1: |
|
n -= 1 |
|
e = e * e2 |
|
term = q**(n*n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
return s |
|
|
|
@defun |
|
def _djacobi_theta2a(ctx, z, q, nd): |
|
""" |
|
case ctx._im(z) != 0 |
|
dtheta(2, z, q, nd) = |
|
j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf) |
|
max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0 |
|
n0 = int(ctx._im(z)/log(q).real - 1/2) |
|
""" |
|
n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) |
|
e2 = ctx.expj(2*z) |
|
e = e0 = ctx.expj((2*n + 1)*z) |
|
a = q**(n*n + n) |
|
|
|
term = (2*n+1)**nd * a * e |
|
s = term |
|
eps1 = ctx.eps*abs(term) |
|
while 1: |
|
n += 1 |
|
e = e * e2 |
|
term = (2*n+1)**nd * q**(n*n + n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
e = e0 |
|
e2 = ctx.expj(-2*z) |
|
n = n0 |
|
while 1: |
|
n -= 1 |
|
e = e * e2 |
|
term = (2*n+1)**nd * q**(n*n + n) * e |
|
if abs(term) < eps1: |
|
break |
|
s += term |
|
return ctx.j**nd * s * ctx.nthroot(q, 4) |
|
|
|
@defun |
|
def _djacobi_theta3a(ctx, z, q, nd): |
|
""" |
|
case ctx._im(z) != 0 |
|
djtheta3(z, q, nd) = (2*j)**nd * |
|
Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf) |
|
max term for minimum n*abs(log(q).real) + ctx._im(z) |
|
""" |
|
n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) |
|
e2 = ctx.expj(2*z) |
|
e = e0 = ctx.expj(2*n*z) |
|
a = q**(n*n) * e |
|
s = term = n**nd * a |
|
if n != 0: |
|
eps1 = ctx.eps*abs(term) |
|
else: |
|
eps1 = ctx.eps*abs(a) |
|
while 1: |
|
n += 1 |
|
e = e * e2 |
|
a = q**(n*n) * e |
|
term = n**nd * a |
|
if n != 0: |
|
aterm = abs(term) |
|
else: |
|
aterm = abs(a) |
|
if aterm < eps1: |
|
break |
|
s += term |
|
e = e0 |
|
e2 = ctx.expj(-2*z) |
|
n = n0 |
|
while 1: |
|
n -= 1 |
|
e = e * e2 |
|
a = q**(n*n) * e |
|
term = n**nd * a |
|
if n != 0: |
|
aterm = abs(term) |
|
else: |
|
aterm = abs(a) |
|
if aterm < eps1: |
|
break |
|
s += term |
|
return (2*ctx.j)**nd * s |
|
|
|
@defun |
|
def jtheta(ctx, n, z, q, derivative=0): |
|
if derivative: |
|
return ctx._djtheta(n, z, q, derivative) |
|
|
|
z = ctx.convert(z) |
|
q = ctx.convert(q) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if abs(q) > ctx.THETA_Q_LIM: |
|
raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) |
|
|
|
extra = 10 |
|
if z: |
|
M = ctx.mag(z) |
|
if M > 5 or (n == 1 and M < -5): |
|
extra += 2*abs(M) |
|
cz = 0.5 |
|
extra2 = 50 |
|
prec0 = ctx.prec |
|
try: |
|
ctx.prec += extra |
|
if n == 1: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._jacobi_theta2(z - ctx.pi/2, q) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._jacobi_theta2a(z - ctx.pi/2, q) |
|
else: |
|
res = ctx._jacobi_theta2(z - ctx.pi/2, q) |
|
elif n == 2: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._jacobi_theta2(z, q) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._jacobi_theta2a(z, q) |
|
else: |
|
res = ctx._jacobi_theta2(z, q) |
|
elif n == 3: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._jacobi_theta3(z, q) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._jacobi_theta3a(z, q) |
|
else: |
|
res = ctx._jacobi_theta3(z, q) |
|
elif n == 4: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._jacobi_theta3(z, -q) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._jacobi_theta3a(z, -q) |
|
else: |
|
res = ctx._jacobi_theta3(z, -q) |
|
else: |
|
raise ValueError |
|
finally: |
|
ctx.prec = prec0 |
|
return res |
|
|
|
@defun |
|
def _djtheta(ctx, n, z, q, derivative=1): |
|
z = ctx.convert(z) |
|
q = ctx.convert(q) |
|
nd = int(derivative) |
|
|
|
if abs(q) > ctx.THETA_Q_LIM: |
|
raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) |
|
extra = 10 + ctx.prec * nd // 10 |
|
if z: |
|
M = ctx.mag(z) |
|
if M > 5 or (n != 1 and M < -5): |
|
extra += 2*abs(M) |
|
cz = 0.5 |
|
extra2 = 50 |
|
prec0 = ctx.prec |
|
try: |
|
ctx.prec += extra |
|
if n == 1: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd) |
|
else: |
|
res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) |
|
elif n == 2: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._djacobi_theta2(z, q, nd) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._djacobi_theta2a(z, q, nd) |
|
else: |
|
res = ctx._djacobi_theta2(z, q, nd) |
|
elif n == 3: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._djacobi_theta3(z, q, nd) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._djacobi_theta3a(z, q, nd) |
|
else: |
|
res = ctx._djacobi_theta3(z, q, nd) |
|
elif n == 4: |
|
if ctx._im(z): |
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): |
|
ctx.dps += extra2 |
|
res = ctx._djacobi_theta3(z, -q, nd) |
|
else: |
|
ctx.dps += 10 |
|
res = ctx._djacobi_theta3a(z, -q, nd) |
|
else: |
|
res = ctx._djacobi_theta3(z, -q, nd) |
|
else: |
|
raise ValueError |
|
finally: |
|
ctx.prec = prec0 |
|
return +res |
|
|