|
""" |
|
This module implements computation of hypergeometric and related |
|
functions. In particular, it provides code for generic summation |
|
of hypergeometric series. Optimized versions for various special |
|
cases are also provided. |
|
""" |
|
|
|
import operator |
|
import math |
|
|
|
from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_ |
|
|
|
from .libintmath import gcd |
|
|
|
from .libmpf import (\ |
|
ComplexResult, round_fast, round_nearest, |
|
negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int, |
|
from_rational, |
|
fzero, fone, fnone, ftwo, finf, fninf, fnan, |
|
mpf_sign, mpf_add, mpf_abs, mpf_pos, |
|
mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max, |
|
mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div, |
|
sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int, |
|
to_rational, |
|
) |
|
|
|
from .libelefun import (\ |
|
mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin, |
|
mpf_sqrt, agm_fixed, |
|
) |
|
|
|
from .libmpc import (\ |
|
mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow, |
|
mpc_div, mpc_add_mpf, mpc_sub_mpf, |
|
mpc_log, mpc_add, mpc_pos, mpc_shift, |
|
mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs, |
|
mpc_mpf_div, mpc_square, mpc_exp |
|
) |
|
|
|
from .libintmath import ifac |
|
from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed |
|
|
|
class NoConvergence(Exception): |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
TODO: |
|
|
|
1. proper mpq parsing |
|
2. imaginary z special-cased (also: rational, integer?) |
|
3. more clever handling of series that don't converge because of stupid |
|
upwards rounding |
|
4. checking for cancellation |
|
|
|
""" |
|
|
|
def make_hyp_summator(key): |
|
""" |
|
Returns a function that sums a generalized hypergeometric series, |
|
for given parameter types (integer, rational, real, complex). |
|
|
|
""" |
|
p, q, param_types, ztype = key |
|
|
|
pstring = "".join(param_types) |
|
fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype) |
|
|
|
|
|
have_complex_param = 'C' in param_types |
|
have_complex_arg = ztype == 'C' |
|
have_complex = have_complex_param or have_complex_arg |
|
|
|
source = [] |
|
add = source.append |
|
|
|
aint = [] |
|
arat = [] |
|
bint = [] |
|
brat = [] |
|
areal = [] |
|
breal = [] |
|
acomplex = [] |
|
bcomplex = [] |
|
|
|
|
|
add("MAX = kwargs.get('maxterms', wp*100)") |
|
add("HIGH = MPZ_ONE<<epsshift") |
|
add("LOW = -HIGH") |
|
|
|
|
|
add("SRE = PRE = one = (MPZ_ONE << wp)") |
|
if have_complex: |
|
add("SIM = PIM = MPZ_ZERO") |
|
|
|
if have_complex_arg: |
|
add("xsign, xm, xe, xbc = z[0]") |
|
add("if xsign: xm = -xm") |
|
add("ysign, ym, ye, ybc = z[1]") |
|
add("if ysign: ym = -ym") |
|
else: |
|
add("xsign, xm, xe, xbc = z") |
|
add("if xsign: xm = -xm") |
|
|
|
add("offset = xe + wp") |
|
add("if offset >= 0:") |
|
add(" ZRE = xm << offset") |
|
add("else:") |
|
add(" ZRE = xm >> (-offset)") |
|
if have_complex_arg: |
|
add("offset = ye + wp") |
|
add("if offset >= 0:") |
|
add(" ZIM = ym << offset") |
|
add("else:") |
|
add(" ZIM = ym >> (-offset)") |
|
|
|
for i, flag in enumerate(param_types): |
|
W = ["A", "B"][i >= p] |
|
if flag == 'Z': |
|
([aint,bint][i >= p]).append(i) |
|
add("%sINT_%i = coeffs[%i]" % (W, i, i)) |
|
elif flag == 'Q': |
|
([arat,brat][i >= p]).append(i) |
|
add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i)) |
|
elif flag == 'R': |
|
([areal,breal][i >= p]).append(i) |
|
add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i) |
|
add("if xsign: xm = -xm") |
|
add("offset = xe + wp") |
|
add("if offset >= 0:") |
|
add(" %sREAL_%i = xm << offset" % (W, i)) |
|
add("else:") |
|
add(" %sREAL_%i = xm >> (-offset)" % (W, i)) |
|
elif flag == 'C': |
|
([acomplex,bcomplex][i >= p]).append(i) |
|
add("__re, __im = coeffs[%i]._mpc_" % i) |
|
add("xsign, xm, xe, xbc = __re") |
|
add("if xsign: xm = -xm") |
|
add("ysign, ym, ye, ybc = __im") |
|
add("if ysign: ym = -ym") |
|
|
|
add("offset = xe + wp") |
|
add("if offset >= 0:") |
|
add(" %sCRE_%i = xm << offset" % (W, i)) |
|
add("else:") |
|
add(" %sCRE_%i = xm >> (-offset)" % (W, i)) |
|
add("offset = ye + wp") |
|
add("if offset >= 0:") |
|
add(" %sCIM_%i = ym << offset" % (W, i)) |
|
add("else:") |
|
add(" %sCIM_%i = ym >> (-offset)" % (W, i)) |
|
else: |
|
raise ValueError |
|
|
|
l_areal = len(areal) |
|
l_breal = len(breal) |
|
cancellable_real = min(l_areal, l_breal) |
|
noncancellable_real_num = areal[cancellable_real:] |
|
noncancellable_real_den = breal[cancellable_real:] |
|
|
|
|
|
add("for n in xrange(1,10**8):") |
|
|
|
add(" if n in magnitude_check:") |
|
add(" p_mag = bitcount(abs(PRE))") |
|
if have_complex: |
|
add(" p_mag = max(p_mag, bitcount(abs(PIM)))") |
|
add(" magnitude_check[n] = wp-p_mag") |
|
|
|
|
|
multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \ |
|
["AP_#".replace("#", str(i)) for i in arat] + \ |
|
["BQ_#".replace("#", str(i)) for i in brat]) |
|
|
|
divisor = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \ |
|
["BP_#".replace("#", str(i)) for i in brat] + \ |
|
["AQ_#".replace("#", str(i)) for i in arat] + ["n"]) |
|
|
|
if multiplier: |
|
add(" mul = " + multiplier) |
|
add(" div = " + divisor) |
|
|
|
|
|
add(" if not div:") |
|
if multiplier: |
|
add(" if not mul:") |
|
add(" break") |
|
add(" raise ZeroDivisionError") |
|
|
|
|
|
if have_complex: |
|
|
|
|
|
|
|
|
|
for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) |
|
for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) |
|
for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) |
|
for k in range(cancellable_real): add(" PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) |
|
for i in noncancellable_real_num: add(" PIM = (PIM * AREAL_#) >> wp".replace("#", str(i))) |
|
for i in noncancellable_real_den: add(" PIM = (PIM << wp) // BREAL_#".replace("#", str(i))) |
|
|
|
if multiplier: |
|
if have_complex_arg: |
|
add(" PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div") |
|
add(" PRE >>= wp") |
|
add(" PIM >>= wp") |
|
else: |
|
add(" PRE = ((mul * PRE * ZRE) >> wp) // div") |
|
add(" PIM = ((mul * PIM * ZRE) >> wp) // div") |
|
else: |
|
if have_complex_arg: |
|
add(" PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div") |
|
add(" PRE >>= wp") |
|
add(" PIM >>= wp") |
|
else: |
|
add(" PRE = ((PRE * ZRE) >> wp) // div") |
|
add(" PIM = ((PIM * ZRE) >> wp) // div") |
|
|
|
for i in acomplex: |
|
add(" PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i))) |
|
add(" PRE >>= wp") |
|
add(" PIM >>= wp") |
|
|
|
for i in bcomplex: |
|
add(" mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i))) |
|
add(" re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i))) |
|
add(" im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i))) |
|
add(" PRE = (re << wp) // mag".replace("#", str(i))) |
|
add(" PIM = (im << wp) // mag".replace("#", str(i))) |
|
|
|
else: |
|
for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) |
|
for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) |
|
for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) |
|
if multiplier: |
|
add(" PRE = ((PRE * mul * ZRE) >> wp) // div") |
|
else: |
|
add(" PRE = ((PRE * ZRE) >> wp) // div") |
|
|
|
|
|
if have_complex: |
|
add(" SRE += PRE") |
|
add(" SIM += PIM") |
|
add(" if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):") |
|
add(" break") |
|
else: |
|
add(" SRE += PRE") |
|
add(" if HIGH > PRE > LOW:") |
|
add(" break") |
|
|
|
|
|
|
|
|
|
add(" if n > MAX:") |
|
add(" raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')") |
|
|
|
|
|
for i in aint: add(" AINT_# += 1".replace("#", str(i))) |
|
for i in bint: add(" BINT_# += 1".replace("#", str(i))) |
|
for i in arat: add(" AP_# += AQ_#".replace("#", str(i))) |
|
for i in brat: add(" BP_# += BQ_#".replace("#", str(i))) |
|
for i in areal: add(" AREAL_# += one".replace("#", str(i))) |
|
for i in breal: add(" BREAL_# += one".replace("#", str(i))) |
|
for i in acomplex: add(" ACRE_# += one".replace("#", str(i))) |
|
for i in bcomplex: add(" BCRE_# += one".replace("#", str(i))) |
|
|
|
if have_complex: |
|
add("a = from_man_exp(SRE, -wp, prec, 'n')") |
|
add("b = from_man_exp(SIM, -wp, prec, 'n')") |
|
|
|
add("if SRE:") |
|
add(" if SIM:") |
|
add(" magn = max(a[2]+a[3], b[2]+b[3])") |
|
add(" else:") |
|
add(" magn = a[2]+a[3]") |
|
add("elif SIM:") |
|
add(" magn = b[2]+b[3]") |
|
add("else:") |
|
add(" magn = -wp+1") |
|
|
|
add("return (a, b), True, magn") |
|
else: |
|
add("a = from_man_exp(SRE, -wp, prec, 'n')") |
|
|
|
add("if SRE:") |
|
add(" magn = a[2]+a[3]") |
|
add("else:") |
|
add(" magn = -wp+1") |
|
|
|
add("return a, False, magn") |
|
|
|
source = "\n".join((" " + line) for line in source) |
|
source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source |
|
|
|
namespace = {} |
|
|
|
exec_(source, globals(), namespace) |
|
|
|
|
|
return source, namespace[fname] |
|
|
|
|
|
if BACKEND == 'sage': |
|
|
|
def make_hyp_summator(key): |
|
""" |
|
Returns a function that sums a generalized hypergeometric series, |
|
for given parameter types (integer, rational, real, complex). |
|
""" |
|
from sage.libs.mpmath.ext_main import hypsum_internal |
|
p, q, param_types, ztype = key |
|
def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs): |
|
return hypsum_internal(p, q, param_types, ztype, coeffs, z, |
|
prec, wp, epsshift, magnitude_check, kwargs) |
|
|
|
return "(none)", _hypsum |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpf_erf(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fzero: return fzero |
|
if x == finf: return fone |
|
if x== fninf: return fnone |
|
return fnan |
|
size = exp + bc |
|
lg = math.log |
|
|
|
if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2): |
|
if sign: |
|
return mpf_perturb(fnone, 0, prec, rnd) |
|
else: |
|
return mpf_perturb(fone, 1, prec, rnd) |
|
|
|
if size < -prec: |
|
|
|
x = mpf_shift(x,1) |
|
c = mpf_sqrt(mpf_pi(prec+20), prec+20) |
|
|
|
return mpf_div(x, c, prec, rnd) |
|
wp = prec + abs(size) + 25 |
|
|
|
t = abs(to_fixed(x, wp)) |
|
t2 = (t*t) >> wp |
|
s, term, k = t, 12345, 1 |
|
while term: |
|
t = ((t * t2) >> wp) // k |
|
term = t // (2*k+1) |
|
if k & 1: |
|
s -= term |
|
else: |
|
s += term |
|
k += 1 |
|
s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp) |
|
if sign: |
|
s = -s |
|
return from_man_exp(s, -wp, prec, rnd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def erfc_check_series(x, prec): |
|
n = to_int(x) |
|
if n**2 * 1.44 > prec: |
|
return True |
|
return False |
|
|
|
def mpf_erfc(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fzero: return fone |
|
if x == finf: return fzero |
|
if x == fninf: return ftwo |
|
return fnan |
|
wp = prec + 20 |
|
mag = bc+exp |
|
|
|
wp += max(0, 2*mag) |
|
regular_erf = sign or mag < 2 |
|
if regular_erf or not erfc_check_series(x, wp): |
|
if regular_erf: |
|
return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd) |
|
|
|
n = to_int(x)+1 |
|
return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd) |
|
s = term = MPZ_ONE << wp |
|
term_prev = 0 |
|
t = (2 * to_fixed(x, wp) ** 2) >> wp |
|
k = 1 |
|
while 1: |
|
term = ((term * (2*k - 1)) << wp) // t |
|
if k > 4 and term > term_prev or not term: |
|
break |
|
if k & 1: |
|
s -= term |
|
else: |
|
s += term |
|
term_prev = term |
|
|
|
k += 1 |
|
s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp) |
|
s = from_man_exp(s, -wp, wp) |
|
z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp) |
|
y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd) |
|
return y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ei_taylor(x, prec): |
|
s = t = x |
|
k = 2 |
|
while t: |
|
t = ((t*x) >> prec) // k |
|
s += t // k |
|
k += 1 |
|
return s |
|
|
|
def complex_ei_taylor(zre, zim, prec): |
|
_abs = abs |
|
sre = tre = zre |
|
sim = tim = zim |
|
k = 2 |
|
while _abs(tre) + _abs(tim) > 5: |
|
tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec |
|
sre += tre // k |
|
sim += tim // k |
|
k += 1 |
|
return sre, sim |
|
|
|
def ei_asymptotic(x, prec): |
|
one = MPZ_ONE << prec |
|
x = t = ((one << prec) // x) |
|
s = one + x |
|
k = 2 |
|
while t: |
|
t = (k*t*x) >> prec |
|
s += t |
|
k += 1 |
|
return s |
|
|
|
def complex_ei_asymptotic(zre, zim, prec): |
|
_abs = abs |
|
one = MPZ_ONE << prec |
|
M = (zim*zim + zre*zre) >> prec |
|
|
|
xre = tre = (zre << prec) // M |
|
xim = tim = ((-zim) << prec) // M |
|
sre = one + xre |
|
sim = xim |
|
k = 2 |
|
while _abs(tre) + _abs(tim) > 1000: |
|
|
|
tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec |
|
sre += tre |
|
sim += tim |
|
k += 1 |
|
if k > prec: |
|
raise NoConvergence |
|
return sre, sim |
|
|
|
def mpf_ei(x, prec, rnd=round_fast, e1=False): |
|
if e1: |
|
x = mpf_neg(x) |
|
sign, man, exp, bc = x |
|
if e1 and not sign: |
|
if x == fzero: |
|
return finf |
|
raise ComplexResult("E1(x) for x < 0") |
|
if man: |
|
xabs = 0, man, exp, bc |
|
xmag = exp+bc |
|
wp = prec + 20 |
|
can_use_asymp = xmag > wp |
|
if not can_use_asymp: |
|
if exp >= 0: |
|
xabsint = man << exp |
|
else: |
|
xabsint = man >> (-exp) |
|
can_use_asymp = xabsint > int(wp*0.693) + 10 |
|
if can_use_asymp: |
|
if xmag > wp: |
|
v = fone |
|
else: |
|
v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp) |
|
v = mpf_mul(v, mpf_exp(x, wp), wp) |
|
v = mpf_div(v, x, prec, rnd) |
|
else: |
|
wp += 2*int(to_int(xabs)) |
|
u = to_fixed(x, wp) |
|
v = ei_taylor(u, wp) + euler_fixed(wp) |
|
t1 = from_man_exp(v,-wp) |
|
t2 = mpf_log(xabs,wp) |
|
v = mpf_add(t1, t2, prec, rnd) |
|
else: |
|
if x == fzero: v = fninf |
|
elif x == finf: v = finf |
|
elif x == fninf: v = fzero |
|
else: v = fnan |
|
if e1: |
|
v = mpf_neg(v) |
|
return v |
|
|
|
def mpc_ei(z, prec, rnd=round_fast, e1=False): |
|
if e1: |
|
z = mpc_neg(z) |
|
a, b = z |
|
asign, aman, aexp, abc = a |
|
bsign, bman, bexp, bbc = b |
|
if b == fzero: |
|
if e1: |
|
x = mpf_neg(mpf_ei(a, prec, rnd)) |
|
if not asign: |
|
y = mpf_neg(mpf_pi(prec, rnd)) |
|
else: |
|
y = fzero |
|
return x, y |
|
else: |
|
return mpf_ei(a, prec, rnd), fzero |
|
if a != fzero: |
|
if not aman or not bman: |
|
return (fnan, fnan) |
|
wp = prec + 40 |
|
amag = aexp+abc |
|
bmag = bexp+bbc |
|
zmag = max(amag, bmag) |
|
can_use_asymp = zmag > wp |
|
if not can_use_asymp: |
|
zabsint = abs(to_int(a)) + abs(to_int(b)) |
|
can_use_asymp = zabsint > int(wp*0.693) + 20 |
|
try: |
|
if can_use_asymp: |
|
if zmag > wp: |
|
v = fone, fzero |
|
else: |
|
zre = to_fixed(a, wp) |
|
zim = to_fixed(b, wp) |
|
vre, vim = complex_ei_asymptotic(zre, zim, wp) |
|
v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) |
|
v = mpc_mul(v, mpc_exp(z, wp), wp) |
|
v = mpc_div(v, z, wp) |
|
if e1: |
|
v = mpc_neg(v, prec, rnd) |
|
else: |
|
x, y = v |
|
if bsign: |
|
v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) |
|
else: |
|
v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) |
|
return v |
|
except NoConvergence: |
|
pass |
|
|
|
wp += 2*int(to_int(mpc_abs(z, 5))) |
|
zre = to_fixed(a, wp) |
|
zim = to_fixed(b, wp) |
|
vre, vim = complex_ei_taylor(zre, zim, wp) |
|
vre += euler_fixed(wp) |
|
v = from_man_exp(vre,-wp), from_man_exp(vim,-wp) |
|
if e1: |
|
u = mpc_log(mpc_neg(z),wp) |
|
else: |
|
u = mpc_log(z,wp) |
|
v = mpc_add(v, u, prec, rnd) |
|
if e1: |
|
v = mpc_neg(v) |
|
return v |
|
|
|
def mpf_e1(x, prec, rnd=round_fast): |
|
return mpf_ei(x, prec, rnd, True) |
|
|
|
def mpc_e1(x, prec, rnd=round_fast): |
|
return mpc_ei(x, prec, rnd, True) |
|
|
|
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False): |
|
""" |
|
E_n(x), n an integer, x real |
|
|
|
With gamma=True, computes Gamma(n,x) (upper incomplete gamma function) |
|
|
|
Returns (real, None) if real, otherwise (real, imag) |
|
The imaginary part is an optional branch cut term |
|
|
|
""" |
|
sign, man, exp, bc = x |
|
if not man: |
|
if gamma: |
|
if x == fzero: |
|
|
|
if n <= 0: |
|
return finf, None |
|
return mpf_gamma_int(n, prec, rnd), None |
|
if x == finf: |
|
return fzero, None |
|
|
|
return fnan, fnan |
|
else: |
|
if x == fzero: |
|
if n > 1: |
|
return from_rational(1, n-1, prec, rnd), None |
|
else: |
|
return finf, None |
|
if x == finf: |
|
return fzero, None |
|
return fnan, fnan |
|
n_orig = n |
|
if gamma: |
|
n = 1-n |
|
wp = prec + 20 |
|
xmag = exp + bc |
|
|
|
if xmag < -10: |
|
raise NotImplementedError |
|
nmag = bitcount(abs(n)) |
|
have_imag = n > 0 and sign |
|
negx = mpf_neg(x) |
|
|
|
if n == 0 or 2*nmag - xmag < -wp: |
|
if gamma: |
|
v = mpf_exp(negx, wp) |
|
re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd) |
|
else: |
|
v = mpf_exp(negx, wp) |
|
re = mpf_div(v, x, prec, rnd) |
|
else: |
|
|
|
can_use_asymptotic_series = -3*wp < n <= 0 |
|
|
|
if not can_use_asymptotic_series: |
|
xi = abs(to_int(x)) |
|
m = min(max(1, xi-n), 2*wp) |
|
siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100) |
|
tol = -wp-10 |
|
can_use_asymptotic_series = siz < tol |
|
if can_use_asymptotic_series: |
|
r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp) |
|
m = n |
|
t = r*m |
|
s = MPZ_ONE << wp |
|
while m and t: |
|
s += t |
|
m += 1 |
|
t = (m*r*t) >> wp |
|
v = mpf_exp(negx, wp) |
|
if gamma: |
|
|
|
v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp) |
|
else: |
|
|
|
v = mpf_div(v, x, wp) |
|
re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd) |
|
elif n == 1: |
|
re = mpf_neg(mpf_ei(negx, prec, rnd)) |
|
elif n > 0 and n < 3*wp: |
|
T1 = mpf_neg(mpf_ei(negx, wp)) |
|
if gamma: |
|
if n_orig & 1: |
|
T1 = mpf_neg(T1) |
|
else: |
|
T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp) |
|
r = t = to_fixed(x, wp) |
|
facs = [1] * (n-1) |
|
for k in range(1,n-1): |
|
facs[k] = facs[k-1] * k |
|
facs = facs[::-1] |
|
s = facs[0] << wp |
|
for k in range(1, n-1): |
|
if k & 1: |
|
s -= facs[k] * t |
|
else: |
|
s += facs[k] * t |
|
t = (t*r) >> wp |
|
T2 = from_man_exp(s, -wp, wp) |
|
T2 = mpf_mul(T2, mpf_exp(negx, wp)) |
|
if gamma: |
|
T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp) |
|
R = mpf_add(T1, T2) |
|
re = mpf_div(R, from_int(ifac(n-1)), prec, rnd) |
|
else: |
|
raise NotImplementedError |
|
if have_imag: |
|
M = from_int(-ifac(n-1)) |
|
if gamma: |
|
im = mpf_div(mpf_pi(wp), M, prec, rnd) |
|
if n_orig & 1: |
|
im = mpf_neg(im) |
|
else: |
|
im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd) |
|
return re, im |
|
else: |
|
return re, None |
|
|
|
def mpf_ci_si_taylor(x, wp, which=0): |
|
""" |
|
0 - Ci(x) - (euler+log(x)) |
|
1 - Si(x) |
|
""" |
|
x = to_fixed(x, wp) |
|
x2 = -(x*x) >> wp |
|
if which == 0: |
|
s, t, k = 0, (MPZ_ONE<<wp), 2 |
|
else: |
|
s, t, k = x, x, 3 |
|
while t: |
|
t = (t*x2//(k*(k-1)))>>wp |
|
s += t//k |
|
k += 2 |
|
return from_man_exp(s, -wp) |
|
|
|
def mpc_ci_si_taylor(re, im, wp, which=0): |
|
|
|
|
|
if re[1]: |
|
mag = re[2]+re[3] |
|
elif im[1]: |
|
mag = im[2]+im[3] |
|
if im[1]: |
|
mag = max(mag, im[2]+im[3]) |
|
if mag > 2 or mag < -wp: |
|
raise NotImplementedError |
|
wp += (2-mag) |
|
zre = to_fixed(re, wp) |
|
zim = to_fixed(im, wp) |
|
z2re = (zim*zim-zre*zre)>>wp |
|
z2im = (-2*zre*zim)>>wp |
|
tre = zre |
|
tim = zim |
|
one = MPZ_ONE<<wp |
|
if which == 0: |
|
sre, sim, tre, tim, k = 0, 0, (MPZ_ONE<<wp), 0, 2 |
|
else: |
|
sre, sim, tre, tim, k = zre, zim, zre, zim, 3 |
|
while max(abs(tre), abs(tim)) > 2: |
|
f = k*(k-1) |
|
tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp |
|
sre += tre//k |
|
sim += tim//k |
|
k += 2 |
|
return from_man_exp(sre, -wp), from_man_exp(sim, -wp) |
|
|
|
def mpf_ci_si(x, prec, rnd=round_fast, which=2): |
|
""" |
|
Calculation of Ci(x), Si(x) for real x. |
|
|
|
which = 0 -- returns (Ci(x), -) |
|
which = 1 -- returns (Si(x), -) |
|
which = 2 -- returns (Ci(x), Si(x)) |
|
|
|
Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. |
|
""" |
|
wp = prec + 20 |
|
sign, man, exp, bc = x |
|
ci, si = None, None |
|
if not man: |
|
if x == fzero: |
|
return (fninf, fzero) |
|
if x == fnan: |
|
return (x, x) |
|
ci = fzero |
|
if which != 0: |
|
if x == finf: |
|
si = mpf_shift(mpf_pi(prec, rnd), -1) |
|
if x == fninf: |
|
si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) |
|
return (ci, si) |
|
|
|
mag = exp+bc |
|
if mag < -wp: |
|
if which != 0: |
|
si = mpf_perturb(x, 1-sign, prec, rnd) |
|
if which != 1: |
|
y = mpf_euler(wp) |
|
xabs = mpf_abs(x) |
|
ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) |
|
return ci, si |
|
|
|
elif mag > wp: |
|
if which != 0: |
|
if sign: |
|
si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) |
|
else: |
|
si = mpf_pi(prec, rnd) |
|
si = mpf_shift(si, -1) |
|
if which != 1: |
|
ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) |
|
return ci, si |
|
else: |
|
wp += abs(mag) |
|
|
|
|
|
asymptotic = mag-1 > math.log(wp, 2) |
|
|
|
if not asymptotic: |
|
if which != 0: |
|
si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) |
|
if which != 1: |
|
ci = mpf_ci_si_taylor(x, wp, 0) |
|
ci = mpf_add(ci, mpf_euler(wp), wp) |
|
ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) |
|
return ci, si |
|
x = mpf_abs(x) |
|
|
|
xf = to_fixed(x, wp) |
|
xr = (MPZ_ONE<<(2*wp)) // xf |
|
s1 = (MPZ_ONE << wp) |
|
s2 = xr |
|
t = xr |
|
k = 2 |
|
while t: |
|
t = -t |
|
t = (t*xr*k)>>wp |
|
k += 1 |
|
s1 += t |
|
t = (t*xr*k)>>wp |
|
k += 1 |
|
s2 += t |
|
s1 = from_man_exp(s1, -wp) |
|
s2 = from_man_exp(s2, -wp) |
|
s1 = mpf_div(s1, x, wp) |
|
s2 = mpf_div(s2, x, wp) |
|
cos, sin = mpf_cos_sin(x, wp) |
|
|
|
|
|
if which != 0: |
|
si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) |
|
si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) |
|
if sign: |
|
si = mpf_neg(si) |
|
si = mpf_pos(si, prec, rnd) |
|
if which != 1: |
|
ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) |
|
return ci, si |
|
|
|
def mpf_ci(x, prec, rnd=round_fast): |
|
if mpf_sign(x) < 0: |
|
raise ComplexResult |
|
return mpf_ci_si(x, prec, rnd, 0)[0] |
|
|
|
def mpf_si(x, prec, rnd=round_fast): |
|
return mpf_ci_si(x, prec, rnd, 1)[1] |
|
|
|
def mpc_ci(z, prec, rnd=round_fast): |
|
re, im = z |
|
if im == fzero: |
|
ci = mpf_ci_si(re, prec, rnd, 0)[0] |
|
if mpf_sign(re) < 0: |
|
return (ci, mpf_pi(prec, rnd)) |
|
return (ci, fzero) |
|
wp = prec + 20 |
|
cre, cim = mpc_ci_si_taylor(re, im, wp, 0) |
|
cre = mpf_add(cre, mpf_euler(wp), wp) |
|
ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd) |
|
return ci |
|
|
|
def mpc_si(z, prec, rnd=round_fast): |
|
re, im = z |
|
if im == fzero: |
|
return (mpf_ci_si(re, prec, rnd, 1)[1], fzero) |
|
wp = prec + 20 |
|
z = mpc_ci_si_taylor(re, im, wp, 1) |
|
return mpc_pos(z, prec, rnd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpf_besseljn(n, x, prec, rounding=round_fast): |
|
prec += 50 |
|
negate = n < 0 and n & 1 |
|
mag = x[2]+x[3] |
|
n = abs(n) |
|
wp = prec + 20 + n*bitcount(n) |
|
if mag < 0: |
|
wp -= n * mag |
|
x = to_fixed(x, wp) |
|
x2 = (x**2) >> wp |
|
if not n: |
|
s = t = MPZ_ONE << wp |
|
else: |
|
s = t = (x**n // ifac(n)) >> ((n-1)*wp + n) |
|
k = 1 |
|
while t: |
|
t = ((t * x2) // (-4*k*(k+n))) >> wp |
|
s += t |
|
k += 1 |
|
if negate: |
|
s = -s |
|
return from_man_exp(s, -wp, prec, rounding) |
|
|
|
def mpc_besseljn(n, z, prec, rounding=round_fast): |
|
negate = n < 0 and n & 1 |
|
n = abs(n) |
|
origprec = prec |
|
zre, zim = z |
|
mag = max(zre[2]+zre[3], zim[2]+zim[3]) |
|
prec += 20 + n*bitcount(n) + abs(mag) |
|
if mag < 0: |
|
prec -= n * mag |
|
zre = to_fixed(zre, prec) |
|
zim = to_fixed(zim, prec) |
|
z2re = (zre**2 - zim**2) >> prec |
|
z2im = (zre*zim) >> (prec-1) |
|
if not n: |
|
sre = tre = MPZ_ONE << prec |
|
sim = tim = MPZ_ZERO |
|
else: |
|
re, im = complex_int_pow(zre, zim, n) |
|
sre = tre = (re // ifac(n)) >> ((n-1)*prec + n) |
|
sim = tim = (im // ifac(n)) >> ((n-1)*prec + n) |
|
k = 1 |
|
while abs(tre) + abs(tim) > 3: |
|
p = -4*k*(k+n) |
|
tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im |
|
tre = (tre // p) >> prec |
|
tim = (tim // p) >> prec |
|
sre += tre |
|
sim += tim |
|
k += 1 |
|
if negate: |
|
sre = -sre |
|
sim = -sim |
|
re = from_man_exp(sre, -prec, origprec, rounding) |
|
im = from_man_exp(sim, -prec, origprec, rounding) |
|
return (re, im) |
|
|
|
def mpf_agm(a, b, prec, rnd=round_fast): |
|
""" |
|
Computes the arithmetic-geometric mean agm(a,b) for |
|
nonnegative mpf values a, b. |
|
""" |
|
asign, aman, aexp, abc = a |
|
bsign, bman, bexp, bbc = b |
|
if asign or bsign: |
|
raise ComplexResult("agm of a negative number") |
|
|
|
if not (aman and bman): |
|
if a == fnan or b == fnan: |
|
return fnan |
|
if a == finf: |
|
if b == fzero: |
|
return fnan |
|
return finf |
|
if b == finf: |
|
if a == fzero: |
|
return fnan |
|
return finf |
|
|
|
return fzero |
|
wp = prec + 20 |
|
amag = aexp+abc |
|
bmag = bexp+bbc |
|
mag_delta = amag - bmag |
|
|
|
abs_mag_delta = abs(mag_delta) |
|
if abs_mag_delta > 10: |
|
while abs_mag_delta > 10: |
|
a, b = mpf_shift(mpf_add(a,b,wp),-1), \ |
|
mpf_sqrt(mpf_mul(a,b,wp),wp) |
|
abs_mag_delta //= 2 |
|
asign, aman, aexp, abc = a |
|
bsign, bman, bexp, bbc = b |
|
amag = aexp+abc |
|
bmag = bexp+bbc |
|
mag_delta = amag - bmag |
|
|
|
|
|
min_mag = min(amag,bmag) |
|
max_mag = max(amag,bmag) |
|
n = 0 |
|
|
|
if min_mag < -8: |
|
n = -min_mag |
|
|
|
elif max_mag > 20: |
|
n = -max_mag |
|
if n: |
|
a = mpf_shift(a, n) |
|
b = mpf_shift(b, n) |
|
|
|
af = to_fixed(a, wp) |
|
bf = to_fixed(b, wp) |
|
g = agm_fixed(af, bf, wp) |
|
return from_man_exp(g, -wp-n, prec, rnd) |
|
|
|
def mpf_agm1(a, prec, rnd=round_fast): |
|
""" |
|
Computes the arithmetic-geometric mean agm(1,a) for a nonnegative |
|
mpf value a. |
|
""" |
|
return mpf_agm(fone, a, prec, rnd) |
|
|
|
def mpc_agm(a, b, prec, rnd=round_fast): |
|
""" |
|
Complex AGM. |
|
|
|
TODO: |
|
* check that convergence works as intended |
|
* optimize |
|
* select a nonarbitrary branch |
|
""" |
|
if mpc_is_infnan(a) or mpc_is_infnan(b): |
|
return fnan, fnan |
|
if mpc_zero in (a, b): |
|
return fzero, fzero |
|
if mpc_neg(a) == b: |
|
return fzero, fzero |
|
wp = prec+20 |
|
eps = mpf_shift(fone, -wp+10) |
|
while 1: |
|
a1 = mpc_shift(mpc_add(a, b, wp), -1) |
|
b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) |
|
a, b = a1, b1 |
|
size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1] |
|
err = mpc_abs(mpc_sub(a, b, 10), 10) |
|
if size == fzero or mpf_lt(err, mpf_mul(eps, size)): |
|
return a |
|
|
|
def mpc_agm1(a, prec, rnd=round_fast): |
|
return mpc_agm(mpc_one, a, prec, rnd) |
|
|
|
def mpf_ellipk(x, prec, rnd=round_fast): |
|
if not x[1]: |
|
if x == fzero: |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
if x == fninf: |
|
return fzero |
|
if x == fnan: |
|
return x |
|
if x == fone: |
|
return finf |
|
|
|
|
|
wp = prec + 15 |
|
|
|
|
|
a = mpf_sqrt(mpf_sub(fone, x, wp), wp) |
|
v = mpf_agm1(a, wp) |
|
r = mpf_div(mpf_pi(wp), v, prec, rnd) |
|
return mpf_shift(r, -1) |
|
|
|
def mpc_ellipk(z, prec, rnd=round_fast): |
|
re, im = z |
|
if im == fzero: |
|
if re == finf: |
|
return mpc_zero |
|
if mpf_le(re, fone): |
|
return mpf_ellipk(re, prec, rnd), fzero |
|
wp = prec + 15 |
|
a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp) |
|
v = mpc_agm1(a, wp) |
|
r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd) |
|
return mpc_shift(r, -1) |
|
|
|
def mpf_ellipe(x, prec, rnd=round_fast): |
|
|
|
|
|
|
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fzero: |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
if x == fninf: |
|
return finf |
|
if x == fnan: |
|
return x |
|
if x == finf: |
|
raise ComplexResult |
|
if x == fone: |
|
return fone |
|
wp = prec+20 |
|
mag = exp+bc |
|
if mag < -wp: |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
|
|
p = max(mag, 0) - wp |
|
h = mpf_shift(fone, p) |
|
K = mpf_ellipk(x, 2*wp) |
|
Kh = mpf_ellipk(mpf_sub(x, h), 2*wp) |
|
Kdiff = mpf_shift(mpf_sub(K, Kh), -p) |
|
t = mpf_sub(fone, x) |
|
b = mpf_mul(Kdiff, mpf_shift(x,1), wp) |
|
return mpf_mul(t, mpf_add(K, b), prec, rnd) |
|
|
|
def mpc_ellipe(z, prec, rnd=round_fast): |
|
re, im = z |
|
if im == fzero: |
|
if re == finf: |
|
return (fzero, finf) |
|
if mpf_le(re, fone): |
|
return mpf_ellipe(re, prec, rnd), fzero |
|
wp = prec + 15 |
|
mag = mpc_abs(z, 1) |
|
p = max(mag[2]+mag[3], 0) - wp |
|
h = mpf_shift(fone, p) |
|
K = mpc_ellipk(z, 2*wp) |
|
Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp) |
|
Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p) |
|
t = mpc_sub(mpc_one, z, wp) |
|
b = mpc_mul(Kdiff, mpc_shift(z,1), wp) |
|
return mpc_mul(t, mpc_add(K, b, wp), prec, rnd) |
|
|