--- license: apache-2.0 language: - de library_name: mlx pipeline_tag: automatic-speech-recognition model-index: - name: mlx version of whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: German ASR Data-Mix type: flozi00/asr-german-mixed metrics: - type: wer value: 2.628 % name: Test WER datasets: - flozi00/asr-german-mixed - flozi00/asr-german-mixed-evals base_model: - primeline/whisper-large-v3-german --- # whisper-large-v3-turbo-german-f16-q4 This model was converted to MLX format from primeline/whisper-large-v3-turbo-german and is quantized to 4bit, float16. made with a [custom script for converting safetensor whisper models](https://github.com/CrispStrobe/mlx-examples/blob/main/whisper/convert_safetensors.py). there is also an [unquantized float16](https://huggingface.co/mlx-community/whisper-large-v3-turbo-german-f16) version ## Use with MLX ```bash git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples/whisper/ pip install -r requirements.txt ``` ```python import mlx_whisper result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="mlx-community/whisper-large-v3-turbo-german-f16") print(result) ``` # whisper-large-v3-turbo-german-f16-q4 This model was converted to MLX format. ## Use with MLX ```bash git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples/whisper/ pip install -r requirements.txt # Example usage import mlx_whisper result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="whisper-large-v3-turbo-german-f16-q4") print(result) ```