File size: 1,550 Bytes
8e0b454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
{}
---

    ---
    license: apache-2.0
    tags:
    - mlx
    - mlx-image
    - vision
    - image-classification
    datasets:
    - imagenet-1k
    library_name: mlx-image
    ---
    # regnet_y_800mf

    A RegNetY-800MF image classification model. Pretrained in ImageNet by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe).

    Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.

    ## How to use
    ```bash
    pip install mlx-image
    ```

    Here is how to use this model for image classification:

    ```python
    from mlxim.model import create_model
    from mlxim.io import read_rgb
    from mlxim.transform import ImageNetTransform

    transform = ImageNetTransform(train=False, img_size=224)
    x = transform(read_rgb("cat.png"))
    x = mx.expand_dims(x, 0)

    model = create_model("regnet_y_800mf")
    model.eval()

    logits = model(x)
    ```

    You can also use the embeds from layer before head:
    ```python
    from mlxim.model import create_model
    from mlxim.io import read_rgb
    from mlxim.transform import ImageNetTransform

    transform = ImageNetTransform(train=False, img_size=224)
    x = transform(read_rgb("cat.png"))
    x = mx.expand_dims(x, 0)

    # first option
    model = create_model("regnet_y_800mf", num_classes=0)
    model.eval()

    embeds = model(x)

    # second option
    model = create_model("regnet_y_800mf")
    model.eval()

    embeds = model.get_features(x)
    ```