--- license: apache-2.0 datasets: - ILSVRC/imagenet-1k tags: - mlx - mlx-image - vision - image-classification library_name: mlx-image --- # regnet_y_800mf A RegNetY-800MF image classification model. Pretrained in ImageNet by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe). Disclaimer: This is a porting of the torch model weights to Apple MLX Framework. ## How to use ```bash pip install mlx-image ``` Here is how to use this model for image classification: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=224) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) model = create_model("regnet_y_800mf") model.eval() logits = model(x) ``` You can also use the embeds from layer before head: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=224) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) # first option model = create_model("regnet_y_800mf", num_classes=0) model.eval() embeds = model(x) # second option model = create_model("regnet_y_800mf") model.eval() embeds = model.get_features(x) ```