Model save
Browse files
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: swin-tiny-patch4-window7-224-FINALConcreteClassifier-SWIN50epochsAUGMENTED
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value:
|
29 |
+
accuracy: 1.0
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value:
|
33 |
+
f1: 1.0
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value:
|
37 |
+
precision: 1.0
|
38 |
+
- name: Recall
|
39 |
+
type: recall
|
40 |
+
value:
|
41 |
+
recall: 1.0
|
42 |
+
---
|
43 |
+
|
44 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
45 |
+
should probably proofread and complete it, then remove this comment. -->
|
46 |
+
|
47 |
+
# swin-tiny-patch4-window7-224-FINALConcreteClassifier-SWIN50epochsAUGMENTED
|
48 |
+
|
49 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
50 |
+
It achieves the following results on the evaluation set:
|
51 |
+
- Loss: 0.0000
|
52 |
+
- Accuracy: {'accuracy': 1.0}
|
53 |
+
- F1: {'f1': 1.0}
|
54 |
+
- Precision: {'precision': 1.0}
|
55 |
+
- Recall: {'recall': 1.0}
|
56 |
+
|
57 |
+
## Model description
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Intended uses & limitations
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training and evaluation data
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
### Training hyperparameters
|
72 |
+
|
73 |
+
The following hyperparameters were used during training:
|
74 |
+
- learning_rate: 5e-05
|
75 |
+
- train_batch_size: 16
|
76 |
+
- eval_batch_size: 16
|
77 |
+
- seed: 42
|
78 |
+
- gradient_accumulation_steps: 4
|
79 |
+
- total_train_batch_size: 64
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: linear
|
82 |
+
- lr_scheduler_warmup_ratio: 0.1
|
83 |
+
- num_epochs: 50
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
88 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
|
89 |
+
| 0.3875 | 0.9994 | 407 | 0.2752 | {'accuracy': 0.9272224781206817} | {'f1': 0.9299076962468851} | {'precision': 0.9308936484753314} | {'recall': 0.9298532516284993} |
|
90 |
+
| 0.2001 | 1.9988 | 814 | 0.0583 | {'accuracy': 0.983110701673576} | {'f1': 0.9837765293059086} | {'precision': 0.9846788595224822} | {'recall': 0.9836211079426627} |
|
91 |
+
| 0.1626 | 2.9982 | 1221 | 0.0207 | {'accuracy': 0.9938584369722094} | {'f1': 0.9941597712458348} | {'precision': 0.9943896461187967} | {'recall': 0.9941051527238169} |
|
92 |
+
| 0.088 | 4.0 | 1629 | 0.0088 | {'accuracy': 0.9969292184861047} | {'f1': 0.9970539871142889} | {'precision': 0.9970656946831583} | {'recall': 0.9970776666292009} |
|
93 |
+
| 0.1079 | 4.9994 | 2036 | 0.0046 | {'accuracy': 0.9987716873944419} | {'f1': 0.9988142853329625} | {'precision': 0.9988066339632395} | {'recall': 0.99882263684388} |
|
94 |
+
| 0.102 | 5.9988 | 2443 | 0.0034 | {'accuracy': 0.9989252264701366} | {'f1': 0.9989565946802677} | {'precision': 0.998933981872335} | {'recall': 0.9989857043158454} |
|
95 |
+
| 0.0594 | 6.9982 | 2850 | 0.0118 | {'accuracy': 0.9972362966374942} | {'f1': 0.9973346644159505} | {'precision': 0.9973144572332442} | {'recall': 0.9974051297029489} |
|
96 |
+
| 0.0335 | 8.0 | 3258 | 0.0030 | {'accuracy': 0.9987716873944419} | {'f1': 0.9988034164628696} | {'precision': 0.9987863396601946} | {'recall': 0.9988260749455921} |
|
97 |
+
| 0.0368 | 8.9994 | 3665 | 0.0036 | {'accuracy': 0.9990787655458314} | {'f1': 0.999110823927686} | {'precision': 0.99909200968523} | {'recall': 0.9991359447004609} |
|
98 |
+
| 0.0564 | 9.9988 | 4072 | 0.0040 | {'accuracy': 0.9984646092430524} | {'f1': 0.998509715288995} | {'precision': 0.9984881711855396} | {'recall': 0.9985402551521871} |
|
99 |
+
| 0.052 | 10.9982 | 4479 | 0.0021 | {'accuracy': 0.9989252264701366} | {'f1': 0.998956584824745} | {'precision': 0.9989419496612204} | {'recall': 0.9989777168523596} |
|
100 |
+
| 0.0429 | 12.0 | 4887 | 0.0033 | {'accuracy': 0.9983110701673575} | {'f1': 0.9983570515623278} | {'precision': 0.9984174575960668} | {'recall': 0.9983115930842853} |
|
101 |
+
| 0.047 | 12.9994 | 5294 | 0.0008 | {'accuracy': 0.9998464609243052} | {'f1': 0.9998504202011455} | {'precision': 0.9998534583821805} | {'recall': 0.9998475609756098} |
|
102 |
+
| 0.0391 | 13.9988 | 5701 | 0.0005 | {'accuracy': 0.9998464609243052} | {'f1': 0.999851770829272} | {'precision': 0.9998561565017261} | {'recall': 0.9998475609756098} |
|
103 |
+
| 0.0499 | 14.9982 | 6108 | 0.0011 | {'accuracy': 0.9995393827729157} | {'f1': 0.9995512387635233} | {'precision': 0.9995614035087719} | {'recall': 0.9995426829268292} |
|
104 |
+
| 0.0351 | 16.0 | 6516 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
105 |
+
| 0.021 | 16.9994 | 6923 | 0.0054 | {'accuracy': 0.9984646092430524} | {'f1': 0.9985038406196534} | {'precision': 0.9985498839907192} | {'recall': 0.9984756097560976} |
|
106 |
+
| 0.0384 | 17.9988 | 7330 | 0.0004 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
107 |
+
| 0.0093 | 18.9982 | 7737 | 0.0007 | {'accuracy': 0.9995393827729157} | {'f1': 0.999555371210602} | {'precision': 0.9995443499392467} | {'recall': 0.9995679723502304} |
|
108 |
+
| 0.0264 | 20.0 | 8145 | 0.0004 | {'accuracy': 0.9998464609243052} | {'f1': 0.9998528788154148} | {'precision': 0.9998499399759904} | {'recall': 0.9998559907834101} |
|
109 |
+
| 0.0191 | 20.9994 | 8552 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
110 |
+
| 0.05 | 21.9988 | 8959 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
111 |
+
| 0.0155 | 22.9982 | 9366 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
112 |
+
| 0.0164 | 24.0 | 9774 | 0.0038 | {'accuracy': 0.9987716873944419} | {'f1': 0.998813860406548} | {'precision': 0.9988584474885844} | {'recall': 0.998780487804878} |
|
113 |
+
| 0.0202 | 24.9994 | 10181 | 0.0004 | {'accuracy': 0.9998464609243052} | {'f1': 0.9998504202011455} | {'precision': 0.9998534583821805} | {'recall': 0.9998475609756098} |
|
114 |
+
| 0.0576 | 25.9988 | 10588 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
115 |
+
| 0.0098 | 26.9982 | 10995 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
116 |
+
| 0.0091 | 28.0 | 11403 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
117 |
+
| 0.0259 | 28.9994 | 11810 | 0.0004 | {'accuracy': 0.9995393827729157} | {'f1': 0.999555371210602} | {'precision': 0.9995443499392467} | {'recall': 0.9995679723502304} |
|
118 |
+
| 0.0064 | 29.9988 | 12217 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
119 |
+
| 0.0097 | 30.9982 | 12624 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
120 |
+
| 0.0102 | 32.0 | 13032 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
121 |
+
| 0.0082 | 32.9994 | 13439 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
122 |
+
| 0.0094 | 33.9988 | 13846 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
123 |
+
| 0.0085 | 34.9982 | 14253 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
124 |
+
| 0.0079 | 36.0 | 14661 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
125 |
+
| 0.006 | 36.9994 | 15068 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
126 |
+
| 0.0039 | 37.9988 | 15475 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
127 |
+
| 0.023 | 38.9982 | 15882 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
128 |
+
| 0.0026 | 40.0 | 16290 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
129 |
+
| 0.0289 | 40.9994 | 16697 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
130 |
+
| 0.0026 | 41.9988 | 17104 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
131 |
+
| 0.0155 | 42.9982 | 17511 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
132 |
+
| 0.0016 | 44.0 | 17919 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
133 |
+
| 0.0005 | 44.9994 | 18326 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
134 |
+
| 0.0058 | 45.9988 | 18733 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
135 |
+
| 0.0012 | 46.9982 | 19140 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
136 |
+
| 0.001 | 48.0 | 19548 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
137 |
+
| 0.0016 | 48.9994 | 19955 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
138 |
+
| 0.0015 | 49.9693 | 20350 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
139 |
+
|
140 |
+
|
141 |
+
### Framework versions
|
142 |
+
|
143 |
+
- Transformers 4.43.3
|
144 |
+
- Pytorch 2.3.1
|
145 |
+
- Datasets 2.20.0
|
146 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110361288
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f57486db5dd5811a6d7b41cdb614bb57e12539da0c235574a6e8202c1864d07
|
3 |
size 110361288
|
runs/Nov07_20-48-09_CARL-Mechanical-PC/events.out.tfevents.1730983690.CARL-Mechanical-PC.18852.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3839a5e413d8b3f38b679447ef955413303f973b96ba2b88b40bf9da1b30927
|
3 |
+
size 450642
|