File size: 8,142 Bytes
ea44f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---

license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-patch16-224-in21k-FINALLaneClassifier-VIT30epochsAUGMENTEDWITHTEST
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value:
        accuracy: 1.0
    - name: F1
      type: f1
      value:
        f1: 1.0
    - name: Precision
      type: precision
      value:
        precision: 1.0
    - name: Recall
      type: recall
      value:
        recall: 1.0
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k-FINALLaneClassifier-VIT30epochsAUGMENTEDWITHTEST

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: {'accuracy': 1.0}
- F1: {'f1': 1.0}
- Precision: {'precision': 1.0}
- Recall: {'recall': 1.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy                         | F1                         | Precision                         | Recall                         |
|:-------------:|:-------:|:----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
| 0.0229        | 0.9973  | 274  | 0.0166          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0083        | 1.9982  | 549  | 0.0062          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0055        | 2.9991  | 824  | 0.0032          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0025        | 4.0     | 1099 | 0.0019          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.004         | 4.9973  | 1373 | 0.0013          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.001         | 5.9982  | 1648 | 0.0009          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0032        | 6.9991  | 1923 | 0.0014          | {'accuracy': 0.9998862343572241} | {'f1': 0.9998861783406705} | {'precision': 0.9998887157801024} | {'recall': 0.9998836668217777} |
| 0.0011        | 8.0     | 2198 | 0.0005          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0035        | 8.9973  | 2472 | 0.0004          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0004        | 9.9982  | 2747 | 0.0003          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0003        | 10.9991 | 3022 | 0.0003          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0004        | 12.0    | 3297 | 0.0003          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0002        | 12.9973 | 3571 | 0.0002          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0005        | 13.9982 | 3846 | 0.0002          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.006         | 14.9991 | 4121 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 16.0    | 4396 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 16.9973 | 4670 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 17.9982 | 4945 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0004        | 18.9991 | 5220 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 20.0    | 5495 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 20.9973 | 5769 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0012        | 21.9982 | 6044 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 22.9991 | 6319 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 24.0    | 6594 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 24.9973 | 6868 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0002        | 25.9982 | 7143 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 26.9991 | 7418 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 28.0    | 7693 | 0.0001          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 28.9973 | 7967 | 0.0000          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |
| 0.0001        | 29.9181 | 8220 | 0.0000          | {'accuracy': 1.0}                | {'f1': 1.0}                | {'precision': 1.0}                | {'recall': 1.0}                |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1