File size: 8,142 Bytes
ea44f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-patch16-224-in21k-FINALLaneClassifier-VIT30epochsAUGMENTEDWITHTEST
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 1.0
- name: F1
type: f1
value:
f1: 1.0
- name: Precision
type: precision
value:
precision: 1.0
- name: Recall
type: recall
value:
recall: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-FINALLaneClassifier-VIT30epochsAUGMENTEDWITHTEST
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: {'accuracy': 1.0}
- F1: {'f1': 1.0}
- Precision: {'precision': 1.0}
- Recall: {'recall': 1.0}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-------:|:----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
| 0.0229 | 0.9973 | 274 | 0.0166 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0083 | 1.9982 | 549 | 0.0062 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0055 | 2.9991 | 824 | 0.0032 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0025 | 4.0 | 1099 | 0.0019 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.004 | 4.9973 | 1373 | 0.0013 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.001 | 5.9982 | 1648 | 0.0009 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0032 | 6.9991 | 1923 | 0.0014 | {'accuracy': 0.9998862343572241} | {'f1': 0.9998861783406705} | {'precision': 0.9998887157801024} | {'recall': 0.9998836668217777} |
| 0.0011 | 8.0 | 2198 | 0.0005 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0035 | 8.9973 | 2472 | 0.0004 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0004 | 9.9982 | 2747 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0003 | 10.9991 | 3022 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0004 | 12.0 | 3297 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0002 | 12.9973 | 3571 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0005 | 13.9982 | 3846 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.006 | 14.9991 | 4121 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 16.0 | 4396 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 16.9973 | 4670 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 17.9982 | 4945 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0004 | 18.9991 | 5220 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 20.0 | 5495 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 20.9973 | 5769 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0012 | 21.9982 | 6044 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 22.9991 | 6319 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 24.0 | 6594 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 24.9973 | 6868 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0002 | 25.9982 | 7143 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 26.9991 | 7418 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 28.0 | 7693 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 28.9973 | 7967 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
| 0.0001 | 29.9181 | 8220 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|