mnavas commited on
Commit
c1a5949
·
1 Parent(s): 480c07d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.41 +/- 0.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f0ef92b2f4cf28d6b93f479c975da2993d36cb1766dfc74e1684ba772926754
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1cf05651f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1cf0561450>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674061400440774451,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUR21PnvBQz2aeBA/UR21PnvBQz2aeBA/UR21PnvBQz2aeBA/UR21PnvBQz2aeBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALYjZPam62L4yagC+7pQsvxGfhT/qEoe8xEPeP079ez4mYHG/8QOdv+FQx7/9C9I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]]",
60
+ "desired_goal": "[[ 0.10621677 -0.4232991 -0.1254051 ]\n [-0.6741475 1.0439168 -0.01648851]\n [ 1.736443 0.24608347 -0.94287336]\n [-1.2266828 -1.5571557 1.6409909 ]]",
61
+ "observation": "[[0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuuqRve0BZj3ylks+cakMvvF2xLx//5Q9t56AvVa8M72JbZI+P3wMOz6kmT2PZR49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.07124849 0.05615418 0.198818 ]\n [-0.13736512 -0.0239825 0.07275295]\n [-0.06280272 -0.04388078 0.28599194]\n [ 0.00214364 0.0750203 0.03867107]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaAdcV8yoA8CUhpRSlIwBbJRLMowBdJRHQKM2TabnX/Z1fZQoaAZoCWgPQwhkA+li02oAwJSGlFKUaBVLMmgWR0CjNhF2V3UydX2UKGgGaAloD0MIPMCTFi6r/L+UhpRSlGgVSzJoFkdAozXXHq/ucHV9lChoBmgJaA9DCMMoCB7ffgTAlIaUUpRoFUsyaBZHQKM1m58Sf191fZQoaAZoCWgPQwguAfinVAn6v5SGlFKUaBVLMmgWR0CjNzlGXokidX2UKGgGaAloD0MI2lcepKcIAMCUhpRSlGgVSzJoFkdAozb9OKwY+HV9lChoBmgJaA9DCGlyMQbWsf6/lIaUUpRoFUsyaBZHQKM2wtYB/7V1fZQoaAZoCWgPQwg3GVWGcXcEwJSGlFKUaBVLMmgWR0CjNodj5KvndX2UKGgGaAloD0MIXW+bqRCPA8CUhpRSlGgVSzJoFkdAozgc7QswtnV9lChoBmgJaA9DCPA1BMdlXPy/lIaUUpRoFUsyaBZHQKM34MjNY8x1fZQoaAZoCWgPQwjjiLX4FAD4v5SGlFKUaBVLMmgWR0CjN6aZ6UqydX2UKGgGaAloD0MIVg3C3O7lCMCUhpRSlGgVSzJoFkdAozdrT6SDAnV9lChoBmgJaA9DCFZhM8AFWfC/lIaUUpRoFUsyaBZHQKM5JqfvnbJ1fZQoaAZoCWgPQwjfiy/a40X1v5SGlFKUaBVLMmgWR0CjOOqFyq+8dX2UKGgGaAloD0MIy4Rf6ufN9L+UhpRSlGgVSzJoFkdAoziwKneiz3V9lChoBmgJaA9DCBtjJ7wE5/u/lIaUUpRoFUsyaBZHQKM4dJJXhfl1fZQoaAZoCWgPQwhlbynniz0DwJSGlFKUaBVLMmgWR0CjOhgKOT7mdX2UKGgGaAloD0MI+kMzT66p9b+UhpRSlGgVSzJoFkdAozncJjUd73V9lChoBmgJaA9DCMpS6/1GWwPAlIaUUpRoFUsyaBZHQKM5odV/+bV1fZQoaAZoCWgPQwiZEkn0Mgrzv5SGlFKUaBVLMmgWR0CjOWYmLLpzdX2UKGgGaAloD0MIdOs1PSio87+UhpRSlGgVSzJoFkdAozsJMlC1JHV9lChoBmgJaA9DCGtGBrmL8PO/lIaUUpRoFUsyaBZHQKM6zP420iR1fZQoaAZoCWgPQwjIQJ5dvjXwv5SGlFKUaBVLMmgWR0CjOpKohpxndX2UKGgGaAloD0MImSzuPzKd+b+UhpRSlGgVSzJoFkdAozpXPcBU73V9lChoBmgJaA9DCJazd0Zb1fu/lIaUUpRoFUsyaBZHQKM773xnWat1fZQoaAZoCWgPQwg7/3bZr3v6v5SGlFKUaBVLMmgWR0CjO7Nb1RLsdX2UKGgGaAloD0MIychZ2NNO/7+UhpRSlGgVSzJoFkdAozt5L0z0pXV9lChoBmgJaA9DCHDpmPOMPfe/lIaUUpRoFUsyaBZHQKM7PZdv8651fZQoaAZoCWgPQwjjF15J8lz6v5SGlFKUaBVLMmgWR0CjPN+o1k1/dX2UKGgGaAloD0MIZoaNsn7z+r+UhpRSlGgVSzJoFkdAozyjngYP5HV9lChoBmgJaA9DCBOe0OtPYvy/lIaUUpRoFUsyaBZHQKM8aWkadc11fZQoaAZoCWgPQwiR0mwehwEFwJSGlFKUaBVLMmgWR0CjPC3IMjNZdX2UKGgGaAloD0MIjV94Jcmz/r+UhpRSlGgVSzJoFkdAoz3M0HhS+HV9lChoBmgJaA9DCCRjtfl/1fu/lIaUUpRoFUsyaBZHQKM9kNQTEit1fZQoaAZoCWgPQwjMe5xpwvb6v5SGlFKUaBVLMmgWR0CjPVavzOHGdX2UKGgGaAloD0MIzuMwmL/C5b+UhpRSlGgVSzJoFkdAoz0bKPn0TXV9lChoBmgJaA9DCOvld5rMGAXAlIaUUpRoFUsyaBZHQKM+3xri2lV1fZQoaAZoCWgPQwhlwi/186b0v5SGlFKUaBVLMmgWR0CjPqLh73PBdX2UKGgGaAloD0MIDK8kea5v8r+UhpRSlGgVSzJoFkdAoz5osZpBX3V9lChoBmgJaA9DCFw7URISafa/lIaUUpRoFUsyaBZHQKM+LZFG5MF1fZQoaAZoCWgPQwjx1CMNbmv0v5SGlFKUaBVLMmgWR0CjP8J3xFy8dX2UKGgGaAloD0MI1zIZjuez9b+UhpRSlGgVSzJoFkdAoz+GdAgPmXV9lChoBmgJaA9DCEKTxJJyt/e/lIaUUpRoFUsyaBZHQKM/TDst03h1fZQoaAZoCWgPQwjjNEQV/gz4v5SGlFKUaBVLMmgWR0CjPxCwr1/UdX2UKGgGaAloD0MI0CueeqTB67+UhpRSlGgVSzJoFkdAo0Cw4jrzG3V9lChoBmgJaA9DCNV46SYxCADAlIaUUpRoFUsyaBZHQKNAdMh5gPV1fZQoaAZoCWgPQwjY1k//WTP1v5SGlFKUaBVLMmgWR0CjQDqqfe1sdX2UKGgGaAloD0MIFop0P6fg+b+UhpRSlGgVSzJoFkdAoz//UWl/IHV9lChoBmgJaA9DCKD/Hrx2Kfq/lIaUUpRoFUsyaBZHQKNBo1gpjMF1fZQoaAZoCWgPQwhVhQZi2SwDwJSGlFKUaBVLMmgWR0CjQWdGqgh9dX2UKGgGaAloD0MIG7luSnmt77+UhpRSlGgVSzJoFkdAo0Es/8l5W3V9lChoBmgJaA9DCElL5e0IJ+a/lIaUUpRoFUsyaBZHQKNA8YBvJil1fZQoaAZoCWgPQwjpCyHn/b/2v5SGlFKUaBVLMmgWR0CjQpHbh3qzdX2UKGgGaAloD0MIMpBnl2/9+r+UhpRSlGgVSzJoFkdAo0JVsHjZMHV9lChoBmgJaA9DCEq05PG0PALAlIaUUpRoFUsyaBZHQKNCG1/lQuV1fZQoaAZoCWgPQwg51sVtNADwv5SGlFKUaBVLMmgWR0CjQd/qxC6ZdX2UKGgGaAloD0MITkF+NnI9BMCUhpRSlGgVSzJoFkdAo0N/zcynDXV9lChoBmgJaA9DCLQiaqLPB/q/lIaUUpRoFUsyaBZHQKNDQ6fapP11fZQoaAZoCWgPQwgdHVcju9L2v5SGlFKUaBVLMmgWR0CjQwl2eQMhdX2UKGgGaAloD0MIAmISLuSR8r+UhpRSlGgVSzJoFkdAo0LN6cAimnV9lChoBmgJaA9DCAFNhA1Pr/m/lIaUUpRoFUsyaBZHQKNEc83dbgV1fZQoaAZoCWgPQwgT7pV5qy7+v5SGlFKUaBVLMmgWR0CjRDfNiYsvdX2UKGgGaAloD0MIixpMw/CR8L+UhpRSlGgVSzJoFkdAo0P9hw2l23V9lChoBmgJaA9DCNaryOiAZPS/lIaUUpRoFUsyaBZHQKNDwiDdxhl1fZQoaAZoCWgPQwhcV8wIb8/0v5SGlFKUaBVLMmgWR0CjRV20zCUHdX2UKGgGaAloD0MI94+F6BC4+r+UhpRSlGgVSzJoFkdAo0Uhr8BMjHV9lChoBmgJaA9DCHbgnBGl/fq/lIaUUpRoFUsyaBZHQKNE51xKg7J1fZQoaAZoCWgPQwgx0LUvoNf/v5SGlFKUaBVLMmgWR0CjRKwkHD77dX2UKGgGaAloD0MI1xcJbTkX8b+UhpRSlGgVSzJoFkdAo0ZowXZXdXV9lChoBmgJaA9DCF4R/G8lO/O/lIaUUpRoFUsyaBZHQKNGLSx7iQ11fZQoaAZoCWgPQwgeNSbEXFL4v5SGlFKUaBVLMmgWR0CjRfNh3JPqdX2UKGgGaAloD0MIFLNeDOXE+r+UhpRSlGgVSzJoFkdAo0W4G8mKInV9lChoBmgJaA9DCLgGtkqwWALAlIaUUpRoFUsyaBZHQKNHW2tMfzV1fZQoaAZoCWgPQwhjuDoA4q79v5SGlFKUaBVLMmgWR0CjRx8rqdH2dX2UKGgGaAloD0MI0QfL2NDN+r+UhpRSlGgVSzJoFkdAo0bkyN4qw3V9lChoBmgJaA9DCFLWbyami/a/lIaUUpRoFUsyaBZHQKNGqTpxFRZ1fZQoaAZoCWgPQwglzoqoiT71v5SGlFKUaBVLMmgWR0CjSEK/VRUFdX2UKGgGaAloD0MIZB75g4Gn/L+UhpRSlGgVSzJoFkdAo0gGvGIbfnV9lChoBmgJaA9DCMCvkSQIF/q/lIaUUpRoFUsyaBZHQKNHzFG5MDh1fZQoaAZoCWgPQwh/h6JAn0gAwJSGlFKUaBVLMmgWR0CjR5DfWMCLdX2UKGgGaAloD0MIrkZ2pWWk7b+UhpRSlGgVSzJoFkdAo0kweLehwnV9lChoBmgJaA9DCFTgZBu4w/y/lIaUUpRoFUsyaBZHQKNI9EAo5Px1fZQoaAZoCWgPQwglea7vwwH0v5SGlFKUaBVLMmgWR0CjSLnj6vaDdX2UKGgGaAloD0MIILWJk/t9AcCUhpRSlGgVSzJoFkdAo0h+Rq46O3V9lChoBmgJaA9DCNHmOLcJd/2/lIaUUpRoFUsyaBZHQKNKEarmyPd1fZQoaAZoCWgPQwhbQdMSK6Psv5SGlFKUaBVLMmgWR0CjSdV3t8eCdX2UKGgGaAloD0MIcR+5Nen2AMCUhpRSlGgVSzJoFkdAo0mbJCBwuXV9lChoBmgJaA9DCOASgH9KtQPAlIaUUpRoFUsyaBZHQKNJX4zJp351fZQoaAZoCWgPQwineccpOhL+v5SGlFKUaBVLMmgWR0CjSvZeiSJTdX2UKGgGaAloD0MIH4XrUbje97+UhpRSlGgVSzJoFkdAo0q6FuejEnV9lChoBmgJaA9DCFFKCFbVC/a/lIaUUpRoFUsyaBZHQKNKf64UeuF1fZQoaAZoCWgPQwgKhnMNM7T1v5SGlFKUaBVLMmgWR0CjSkQN9YwJdX2UKGgGaAloD0MIFY4glWLH7L+UhpRSlGgVSzJoFkdAo0vcAggX/HV9lChoBmgJaA9DCJFgqpm11PW/lIaUUpRoFUsyaBZHQKNLn9LHuJF1fZQoaAZoCWgPQwhEM0+uKRD2v5SGlFKUaBVLMmgWR0CjS2WF36hydX2UKGgGaAloD0MIldV0PdH19r+UhpRSlGgVSzJoFkdAo0sqDkELY3V9lChoBmgJaA9DCH0/NV66yfK/lIaUUpRoFUsyaBZHQKNMw8YAKfF1fZQoaAZoCWgPQwgrweJw5pf/v5SGlFKUaBVLMmgWR0CjTIeWfK6ndX2UKGgGaAloD0MI106UhERa9r+UhpRSlGgVSzJoFkdAo0xNRxcVxnV9lChoBmgJaA9DCJXVdD3Rde+/lIaUUpRoFUsyaBZHQKNMEcYqG1x1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cec916fdc893b4740a985988fb5b884022b6f2d5cc1fb8d118e8e949148fd5ac
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63975e123a3656265a86b432a6d5fc93bdb2f34e2fb528854602654fd4679ea
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1cf05651f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1cf0561450>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674061400440774451, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUR21PnvBQz2aeBA/UR21PnvBQz2aeBA/UR21PnvBQz2aeBA/UR21PnvBQz2aeBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALYjZPam62L4yagC+7pQsvxGfhT/qEoe8xEPeP079ez4mYHG/8QOdv+FQx7/9C9I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDtRHbU+e8FDPZp4ED8YhdU8Fu/TOy3zdDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]\n [0.3537393 0.04779194 0.56434023]]", "desired_goal": "[[ 0.10621677 -0.4232991 -0.1254051 ]\n [-0.6741475 1.0439168 -0.01648851]\n [ 1.736443 0.24608347 -0.94287336]\n [-1.2266828 -1.5571557 1.6409909 ]]", "observation": "[[0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]\n [0.3537393 0.04779194 0.56434023 0.02606444 0.00646771 0.00373764]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuuqRve0BZj3ylks+cakMvvF2xLx//5Q9t56AvVa8M72JbZI+P3wMOz6kmT2PZR49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07124849 0.05615418 0.198818 ]\n [-0.13736512 -0.0239825 0.07275295]\n [-0.06280272 -0.04388078 0.28599194]\n [ 0.00214364 0.0750203 0.03867107]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaAdcV8yoA8CUhpRSlIwBbJRLMowBdJRHQKM2TabnX/Z1fZQoaAZoCWgPQwhkA+li02oAwJSGlFKUaBVLMmgWR0CjNhF2V3UydX2UKGgGaAloD0MIPMCTFi6r/L+UhpRSlGgVSzJoFkdAozXXHq/ucHV9lChoBmgJaA9DCMMoCB7ffgTAlIaUUpRoFUsyaBZHQKM1m58Sf191fZQoaAZoCWgPQwguAfinVAn6v5SGlFKUaBVLMmgWR0CjNzlGXokidX2UKGgGaAloD0MI2lcepKcIAMCUhpRSlGgVSzJoFkdAozb9OKwY+HV9lChoBmgJaA9DCGlyMQbWsf6/lIaUUpRoFUsyaBZHQKM2wtYB/7V1fZQoaAZoCWgPQwg3GVWGcXcEwJSGlFKUaBVLMmgWR0CjNodj5KvndX2UKGgGaAloD0MIXW+bqRCPA8CUhpRSlGgVSzJoFkdAozgc7QswtnV9lChoBmgJaA9DCPA1BMdlXPy/lIaUUpRoFUsyaBZHQKM34MjNY8x1fZQoaAZoCWgPQwjjiLX4FAD4v5SGlFKUaBVLMmgWR0CjN6aZ6UqydX2UKGgGaAloD0MIVg3C3O7lCMCUhpRSlGgVSzJoFkdAozdrT6SDAnV9lChoBmgJaA9DCFZhM8AFWfC/lIaUUpRoFUsyaBZHQKM5JqfvnbJ1fZQoaAZoCWgPQwjfiy/a40X1v5SGlFKUaBVLMmgWR0CjOOqFyq+8dX2UKGgGaAloD0MIy4Rf6ufN9L+UhpRSlGgVSzJoFkdAoziwKneiz3V9lChoBmgJaA9DCBtjJ7wE5/u/lIaUUpRoFUsyaBZHQKM4dJJXhfl1fZQoaAZoCWgPQwhlbynniz0DwJSGlFKUaBVLMmgWR0CjOhgKOT7mdX2UKGgGaAloD0MI+kMzT66p9b+UhpRSlGgVSzJoFkdAozncJjUd73V9lChoBmgJaA9DCMpS6/1GWwPAlIaUUpRoFUsyaBZHQKM5odV/+bV1fZQoaAZoCWgPQwiZEkn0Mgrzv5SGlFKUaBVLMmgWR0CjOWYmLLpzdX2UKGgGaAloD0MIdOs1PSio87+UhpRSlGgVSzJoFkdAozsJMlC1JHV9lChoBmgJaA9DCGtGBrmL8PO/lIaUUpRoFUsyaBZHQKM6zP420iR1fZQoaAZoCWgPQwjIQJ5dvjXwv5SGlFKUaBVLMmgWR0CjOpKohpxndX2UKGgGaAloD0MImSzuPzKd+b+UhpRSlGgVSzJoFkdAozpXPcBU73V9lChoBmgJaA9DCJazd0Zb1fu/lIaUUpRoFUsyaBZHQKM773xnWat1fZQoaAZoCWgPQwg7/3bZr3v6v5SGlFKUaBVLMmgWR0CjO7Nb1RLsdX2UKGgGaAloD0MIychZ2NNO/7+UhpRSlGgVSzJoFkdAozt5L0z0pXV9lChoBmgJaA9DCHDpmPOMPfe/lIaUUpRoFUsyaBZHQKM7PZdv8651fZQoaAZoCWgPQwjjF15J8lz6v5SGlFKUaBVLMmgWR0CjPN+o1k1/dX2UKGgGaAloD0MIZoaNsn7z+r+UhpRSlGgVSzJoFkdAozyjngYP5HV9lChoBmgJaA9DCBOe0OtPYvy/lIaUUpRoFUsyaBZHQKM8aWkadc11fZQoaAZoCWgPQwiR0mwehwEFwJSGlFKUaBVLMmgWR0CjPC3IMjNZdX2UKGgGaAloD0MIjV94Jcmz/r+UhpRSlGgVSzJoFkdAoz3M0HhS+HV9lChoBmgJaA9DCCRjtfl/1fu/lIaUUpRoFUsyaBZHQKM9kNQTEit1fZQoaAZoCWgPQwjMe5xpwvb6v5SGlFKUaBVLMmgWR0CjPVavzOHGdX2UKGgGaAloD0MIzuMwmL/C5b+UhpRSlGgVSzJoFkdAoz0bKPn0TXV9lChoBmgJaA9DCOvld5rMGAXAlIaUUpRoFUsyaBZHQKM+3xri2lV1fZQoaAZoCWgPQwhlwi/186b0v5SGlFKUaBVLMmgWR0CjPqLh73PBdX2UKGgGaAloD0MIDK8kea5v8r+UhpRSlGgVSzJoFkdAoz5osZpBX3V9lChoBmgJaA9DCFw7URISafa/lIaUUpRoFUsyaBZHQKM+LZFG5MF1fZQoaAZoCWgPQwjx1CMNbmv0v5SGlFKUaBVLMmgWR0CjP8J3xFy8dX2UKGgGaAloD0MI1zIZjuez9b+UhpRSlGgVSzJoFkdAoz+GdAgPmXV9lChoBmgJaA9DCEKTxJJyt/e/lIaUUpRoFUsyaBZHQKM/TDst03h1fZQoaAZoCWgPQwjjNEQV/gz4v5SGlFKUaBVLMmgWR0CjPxCwr1/UdX2UKGgGaAloD0MI0CueeqTB67+UhpRSlGgVSzJoFkdAo0Cw4jrzG3V9lChoBmgJaA9DCNV46SYxCADAlIaUUpRoFUsyaBZHQKNAdMh5gPV1fZQoaAZoCWgPQwjY1k//WTP1v5SGlFKUaBVLMmgWR0CjQDqqfe1sdX2UKGgGaAloD0MIFop0P6fg+b+UhpRSlGgVSzJoFkdAoz//UWl/IHV9lChoBmgJaA9DCKD/Hrx2Kfq/lIaUUpRoFUsyaBZHQKNBo1gpjMF1fZQoaAZoCWgPQwhVhQZi2SwDwJSGlFKUaBVLMmgWR0CjQWdGqgh9dX2UKGgGaAloD0MIG7luSnmt77+UhpRSlGgVSzJoFkdAo0Es/8l5W3V9lChoBmgJaA9DCElL5e0IJ+a/lIaUUpRoFUsyaBZHQKNA8YBvJil1fZQoaAZoCWgPQwjpCyHn/b/2v5SGlFKUaBVLMmgWR0CjQpHbh3qzdX2UKGgGaAloD0MIMpBnl2/9+r+UhpRSlGgVSzJoFkdAo0JVsHjZMHV9lChoBmgJaA9DCEq05PG0PALAlIaUUpRoFUsyaBZHQKNCG1/lQuV1fZQoaAZoCWgPQwg51sVtNADwv5SGlFKUaBVLMmgWR0CjQd/qxC6ZdX2UKGgGaAloD0MITkF+NnI9BMCUhpRSlGgVSzJoFkdAo0N/zcynDXV9lChoBmgJaA9DCLQiaqLPB/q/lIaUUpRoFUsyaBZHQKNDQ6fapP11fZQoaAZoCWgPQwgdHVcju9L2v5SGlFKUaBVLMmgWR0CjQwl2eQMhdX2UKGgGaAloD0MIAmISLuSR8r+UhpRSlGgVSzJoFkdAo0LN6cAimnV9lChoBmgJaA9DCAFNhA1Pr/m/lIaUUpRoFUsyaBZHQKNEc83dbgV1fZQoaAZoCWgPQwgT7pV5qy7+v5SGlFKUaBVLMmgWR0CjRDfNiYsvdX2UKGgGaAloD0MIixpMw/CR8L+UhpRSlGgVSzJoFkdAo0P9hw2l23V9lChoBmgJaA9DCNaryOiAZPS/lIaUUpRoFUsyaBZHQKNDwiDdxhl1fZQoaAZoCWgPQwhcV8wIb8/0v5SGlFKUaBVLMmgWR0CjRV20zCUHdX2UKGgGaAloD0MI94+F6BC4+r+UhpRSlGgVSzJoFkdAo0Uhr8BMjHV9lChoBmgJaA9DCHbgnBGl/fq/lIaUUpRoFUsyaBZHQKNE51xKg7J1fZQoaAZoCWgPQwgx0LUvoNf/v5SGlFKUaBVLMmgWR0CjRKwkHD77dX2UKGgGaAloD0MI1xcJbTkX8b+UhpRSlGgVSzJoFkdAo0ZowXZXdXV9lChoBmgJaA9DCF4R/G8lO/O/lIaUUpRoFUsyaBZHQKNGLSx7iQ11fZQoaAZoCWgPQwgeNSbEXFL4v5SGlFKUaBVLMmgWR0CjRfNh3JPqdX2UKGgGaAloD0MIFLNeDOXE+r+UhpRSlGgVSzJoFkdAo0W4G8mKInV9lChoBmgJaA9DCLgGtkqwWALAlIaUUpRoFUsyaBZHQKNHW2tMfzV1fZQoaAZoCWgPQwhjuDoA4q79v5SGlFKUaBVLMmgWR0CjRx8rqdH2dX2UKGgGaAloD0MI0QfL2NDN+r+UhpRSlGgVSzJoFkdAo0bkyN4qw3V9lChoBmgJaA9DCFLWbyami/a/lIaUUpRoFUsyaBZHQKNGqTpxFRZ1fZQoaAZoCWgPQwglzoqoiT71v5SGlFKUaBVLMmgWR0CjSEK/VRUFdX2UKGgGaAloD0MIZB75g4Gn/L+UhpRSlGgVSzJoFkdAo0gGvGIbfnV9lChoBmgJaA9DCMCvkSQIF/q/lIaUUpRoFUsyaBZHQKNHzFG5MDh1fZQoaAZoCWgPQwh/h6JAn0gAwJSGlFKUaBVLMmgWR0CjR5DfWMCLdX2UKGgGaAloD0MIrkZ2pWWk7b+UhpRSlGgVSzJoFkdAo0kweLehwnV9lChoBmgJaA9DCFTgZBu4w/y/lIaUUpRoFUsyaBZHQKNI9EAo5Px1fZQoaAZoCWgPQwglea7vwwH0v5SGlFKUaBVLMmgWR0CjSLnj6vaDdX2UKGgGaAloD0MIILWJk/t9AcCUhpRSlGgVSzJoFkdAo0h+Rq46O3V9lChoBmgJaA9DCNHmOLcJd/2/lIaUUpRoFUsyaBZHQKNKEarmyPd1fZQoaAZoCWgPQwhbQdMSK6Psv5SGlFKUaBVLMmgWR0CjSdV3t8eCdX2UKGgGaAloD0MIcR+5Nen2AMCUhpRSlGgVSzJoFkdAo0mbJCBwuXV9lChoBmgJaA9DCOASgH9KtQPAlIaUUpRoFUsyaBZHQKNJX4zJp351fZQoaAZoCWgPQwineccpOhL+v5SGlFKUaBVLMmgWR0CjSvZeiSJTdX2UKGgGaAloD0MIH4XrUbje97+UhpRSlGgVSzJoFkdAo0q6FuejEnV9lChoBmgJaA9DCFFKCFbVC/a/lIaUUpRoFUsyaBZHQKNKf64UeuF1fZQoaAZoCWgPQwgKhnMNM7T1v5SGlFKUaBVLMmgWR0CjSkQN9YwJdX2UKGgGaAloD0MIFY4glWLH7L+UhpRSlGgVSzJoFkdAo0vcAggX/HV9lChoBmgJaA9DCJFgqpm11PW/lIaUUpRoFUsyaBZHQKNLn9LHuJF1fZQoaAZoCWgPQwhEM0+uKRD2v5SGlFKUaBVLMmgWR0CjS2WF36hydX2UKGgGaAloD0MIldV0PdH19r+UhpRSlGgVSzJoFkdAo0sqDkELY3V9lChoBmgJaA9DCH0/NV66yfK/lIaUUpRoFUsyaBZHQKNMw8YAKfF1fZQoaAZoCWgPQwgrweJw5pf/v5SGlFKUaBVLMmgWR0CjTIeWfK6ndX2UKGgGaAloD0MI106UhERa9r+UhpRSlGgVSzJoFkdAo0xNRxcVxnV9lChoBmgJaA9DCJXVdD3Rde+/lIaUUpRoFUsyaBZHQKNMEcYqG1x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (670 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4051721189636737, "std_reward": 0.4438434103713345, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T17:44:34.605057"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c2b94953875a4c468b617cacb6bdc100019464126ee7a23ad6fbc540046122f
3
+ size 3212