--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-finetuned-WebClassification-v2-smalllinguaENv2 results: [] --- # roberta-finetuned-WebClassification-v2-smalllinguaENv2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8560 - Accuracy: 0.525 - F1: 0.525 - Precision: 0.525 - Recall: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 20 | 2.9637 | 0.1 | 0.1000 | 0.1 | 0.1 | | No log | 2.0 | 40 | 2.7821 | 0.225 | 0.225 | 0.225 | 0.225 | | No log | 3.0 | 60 | 2.5523 | 0.4 | 0.4000 | 0.4 | 0.4 | | No log | 4.0 | 80 | 2.3580 | 0.4 | 0.4000 | 0.4 | 0.4 | | No log | 5.0 | 100 | 2.2043 | 0.375 | 0.375 | 0.375 | 0.375 | | No log | 6.0 | 120 | 2.0265 | 0.475 | 0.4750 | 0.475 | 0.475 | | No log | 7.0 | 140 | 1.9271 | 0.5 | 0.5 | 0.5 | 0.5 | | No log | 8.0 | 160 | 1.8560 | 0.525 | 0.525 | 0.525 | 0.525 | | No log | 9.0 | 180 | 1.8013 | 0.525 | 0.525 | 0.525 | 0.525 | | No log | 10.0 | 200 | 1.7784 | 0.525 | 0.525 | 0.525 | 0.525 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3