María Navas Loro commited on
Commit
c5872d2
·
1 Parent(s): e74b241

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -18
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 1.0950
23
- - Accuracy: 0.7742
24
- - F1: 0.7742
25
- - Precision: 0.7742
26
- - Recall: 0.7742
27
 
28
  ## Model description
29
 
@@ -43,27 +43,37 @@ More information needed
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
- - train_batch_size: 8
47
- - eval_batch_size: 8
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 10
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
- | No log | 1.0 | 48 | 2.8245 | 0.2796 | 0.2796 | 0.2796 | 0.2796 |
58
- | No log | 2.0 | 96 | 2.2338 | 0.4301 | 0.4301 | 0.4301 | 0.4301 |
59
- | No log | 3.0 | 144 | 1.9060 | 0.5269 | 0.5269 | 0.5269 | 0.5269 |
60
- | No log | 4.0 | 192 | 1.5349 | 0.6022 | 0.6022 | 0.6022 | 0.6022 |
61
- | No log | 5.0 | 240 | 1.4208 | 0.6882 | 0.6882 | 0.6882 | 0.6882 |
62
- | No log | 6.0 | 288 | 1.3330 | 0.7204 | 0.7204 | 0.7204 | 0.7204 |
63
- | No log | 7.0 | 336 | 1.2037 | 0.7097 | 0.7097 | 0.7097 | 0.7097 |
64
- | No log | 8.0 | 384 | 1.1414 | 0.7419 | 0.7419 | 0.7419 | 0.7419 |
65
- | No log | 9.0 | 432 | 1.0950 | 0.7742 | 0.7742 | 0.7742 | 0.7742 |
66
- | No log | 10.0 | 480 | 1.0883 | 0.7634 | 0.7634 | 0.7634 | 0.7634 |
 
 
 
 
 
 
 
 
 
 
67
 
68
 
69
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.8644
23
+ - Accuracy: 0.8387
24
+ - F1: 0.8387
25
+ - Precision: 0.8387
26
+ - Recall: 0.8387
27
 
28
  ## Model description
29
 
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | No log | 1.0 | 95 | 2.3654 | 0.4409 | 0.4409 | 0.4409 | 0.4409 |
58
+ | No log | 2.0 | 190 | 1.8455 | 0.5269 | 0.5269 | 0.5269 | 0.5269 |
59
+ | No log | 3.0 | 285 | 1.4468 | 0.6344 | 0.6344 | 0.6344 | 0.6344 |
60
+ | No log | 4.0 | 380 | 1.1099 | 0.7419 | 0.7419 | 0.7419 | 0.7419 |
61
+ | No log | 5.0 | 475 | 1.0515 | 0.7634 | 0.7634 | 0.7634 | 0.7634 |
62
+ | 1.6355 | 6.0 | 570 | 0.9938 | 0.7312 | 0.7312 | 0.7312 | 0.7312 |
63
+ | 1.6355 | 7.0 | 665 | 0.8275 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
64
+ | 1.6355 | 8.0 | 760 | 0.8344 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
65
+ | 1.6355 | 9.0 | 855 | 0.8516 | 0.8065 | 0.8065 | 0.8065 | 0.8065 |
66
+ | 1.6355 | 10.0 | 950 | 0.8723 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
67
+ | 0.2827 | 11.0 | 1045 | 0.8644 | 0.8387 | 0.8387 | 0.8387 | 0.8387 |
68
+ | 0.2827 | 12.0 | 1140 | 0.9343 | 0.8065 | 0.8065 | 0.8065 | 0.8065 |
69
+ | 0.2827 | 13.0 | 1235 | 1.0181 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
70
+ | 0.2827 | 14.0 | 1330 | 1.0068 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
71
+ | 0.2827 | 15.0 | 1425 | 1.0085 | 0.8065 | 0.8065 | 0.8065 | 0.8065 |
72
+ | 0.0485 | 16.0 | 1520 | 1.0257 | 0.8280 | 0.8280 | 0.8280 | 0.8280 |
73
+ | 0.0485 | 17.0 | 1615 | 1.0305 | 0.8172 | 0.8172 | 0.8172 | 0.8172 |
74
+ | 0.0485 | 18.0 | 1710 | 1.0648 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
75
+ | 0.0485 | 19.0 | 1805 | 1.0677 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
76
+ | 0.0485 | 20.0 | 1900 | 1.0687 | 0.7957 | 0.7957 | 0.7957 | 0.7957 |
77
 
78
 
79
  ### Framework versions