Commit with first PPO model
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- simple_ppo_lunar_lander.zip +3 -0
- simple_ppo_lunar_lander/_stable_baselines3_version +1 -0
- simple_ppo_lunar_lander/data +94 -0
- simple_ppo_lunar_lander/policy.optimizer.pth +3 -0
- simple_ppo_lunar_lander/policy.pth +3 -0
- simple_ppo_lunar_lander/pytorch_variables.pth +3 -0
- simple_ppo_lunar_lander/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO with a simple MLP policy from Stable-Baselines3
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 278.90 +/- 14.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO with a simple MLP policy from Stable-Baselines3** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO with a simple MLP policy from Stable-Baselines3** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4070fd3ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4070fd3d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4070fd3dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4070fd3e50>", "_build": "<function ActorCriticPolicy._build at 0x7f4070fd3ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4070fd3f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4070fd8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4070fd80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4070fd8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4070fd81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4070fd8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4070fd5090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671548696169918526, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI07hj0ZqlQ/neOuPUkUZL8/J4g9XxGQvAAAAAAAAAAAxk8Dvq9MRT0pSg0+ek2JvvMGlLwgxdA9AAAAAAAAAAAAcM86sK/BPyaBAjxCPu89qfOEu9uAxzsAAAAAAAAAADN7eT3nWl8/qj4nPpSDZL//ga49ko0qvQAAAAAAAAAALesVvryhHj2dvFc+mw18vsX4sLp7HfE8AAAAAAAAAACai2w9e4KHurJdg72yXYEwE3jMugbItTMAAIA/AACAP83CMTyPca8/kq2EPjKP+b6P8Ci7ecsdPQAAAAAAAAAAzUm3PIWjsLndni6+71iQPEiqrDslIHy9AACAPwAAgD8zWOc9OCC/PFim174dch2/MeGkPrg1l74AAAAAAACAP1MDDb70yZ09ZWuhPu6esr5rCs48FqUfPgAAAAAAAAAAjWGTPRnMLz/ybJo9tsFOvyQHRT2U9KU8AAAAAAAAAADNiNw9ZEO+P9YfMz8T9ho9VHxCvE6+dz0AAAAAAAAAAFMNLT7Z2H0/W56mPo42Nb9xaG8+KigjPgAAAAAAAAAAgO0bvSkAF7q7u9GyquwAMYQg5DpRCKwzAAAAAAAAgD+aERY7pN0hu2vMcTxLo7E8/eg9vNnMlz0AAIA/AACAPzPAgD3yzjE/rcydPSz2Xb/Ur5w9UqoDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI++WTFUPncECUhpRSlIwBbJRLrIwBdJRHQKNj9VPva111fZQoaAZoCWgPQwghdTv7CmJzQJSGlFKUaBVL72gWR0CjY/8UEgW8dX2UKGgGaAloD0MIx0eLM4YBckCUhpRSlGgVS7JoFkdAo2RPgP3BYXV9lChoBmgJaA9DCG2RtBu9t3NAlIaUUpRoFUvAaBZHQKNkVf7aZhN1fZQoaAZoCWgPQwh2Gf7TDSF0QJSGlFKUaBVL7GgWR0CjZInanJkodX2UKGgGaAloD0MIhjyCG6nfckCUhpRSlGgVS8doFkdAo2SZk078vXV9lChoBmgJaA9DCKRQFr4+ynFAlIaUUpRoFUvXaBZHQKNktdYW+Gp1fZQoaAZoCWgPQwjNr+YAwdZyQJSGlFKUaBVLpmgWR0CjZL/hl18tdX2UKGgGaAloD0MIh+C4jFu5cECUhpRSlGgVS4doFkdAo2TFwWFewHV9lChoBmgJaA9DCJTdzOgHw3FAlIaUUpRoFUvGaBZHQKNk3toi9qV1fZQoaAZoCWgPQwjoLomz4lhwQJSGlFKUaBVLpWgWR0CjZQs54nnddX2UKGgGaAloD0MI0NGqlrSbckCUhpRSlGgVS9doFkdAo2Vcb3oLX3V9lChoBmgJaA9DCH3O3a6XwnBAlIaUUpRoFUuMaBZHQKNl463AmAt1fZQoaAZoCWgPQwgXgbG+gQdHQJSGlFKUaBVLaWgWR0CjZfDBEa2ndX2UKGgGaAloD0MI7E0MyYmCcUCUhpRSlGgVS8RoFkdAo2X9/c32mHV9lChoBmgJaA9DCEnW4ejqT3RAlIaUUpRoFUv5aBZHQKNmCsGxD9h1fZQoaAZoCWgPQwhypgnbzzVzQJSGlFKUaBVLw2gWR0CjZjU3fhuPdX2UKGgGaAloD0MI5Lop5bXib0CUhpRSlGgVS6JoFkdAo2Zra4+bE3V9lChoBmgJaA9DCFmGONZFIXNAlIaUUpRoFUvoaBZHQKNmbrqMWGh1fZQoaAZoCWgPQwireCPziJhwQJSGlFKUaBVLsGgWR0CjZqCAMDwIdX2UKGgGaAloD0MIE51lFqG2ckCUhpRSlGgVS+5oFkdAo2a5JqZc9nV9lChoBmgJaA9DCMiW5esy+3FAlIaUUpRoFUu5aBZHQKNm1P6be/J1fZQoaAZoCWgPQwjGTngJDoRzQJSGlFKUaBVL6mgWR0CjZwPHLidbdX2UKGgGaAloD0MIaa1ocxwwckCUhpRSlGgVS8NoFkdAo2cfBi1Aq3V9lChoBmgJaA9DCJpEveCTN3JAlIaUUpRoFUvnaBZHQKNna0TDfm91fZQoaAZoCWgPQwgwoBfunAhzQJSGlFKUaBVL6mgWR0CjZ8GqPwNLdX2UKGgGaAloD0MIBHRfzizLcECUhpRSlGgVS6RoFkdAo2fVt65Xl3V9lChoBmgJaA9DCIMWEjD6BHNAlIaUUpRoFUvaaBZHQKNn6UMXrMV1fZQoaAZoCWgPQwjNHmgFBmhwQJSGlFKUaBVLtGgWR0CjZ/jbzshQdX2UKGgGaAloD0MIofMau8RDcECUhpRSlGgVS7JoFkdAo2gJ6hQFcXV9lChoBmgJaA9DCL+c2a6QUnJAlIaUUpRoFUu3aBZHQKNoRn8sMAp1fZQoaAZoCWgPQwieCyO9aPZyQJSGlFKUaBVL3GgWR0CjaJABDG96dX2UKGgGaAloD0MIONkG7gA2ckCUhpRSlGgVS8JoFkdAo2iapFTef3V9lChoBmgJaA9DCB7gSQvXLHFAlIaUUpRoFUu4aBZHQKNozOcDr7h1fZQoaAZoCWgPQwgaidAINh9zQJSGlFKUaBVL0mgWR0CjaMnp8neBdX2UKGgGaAloD0MIc56xL5lQcECUhpRSlGgVS8hoFkdAo2jfrIHTqnV9lChoBmgJaA9DCAPS/gfYLHFAlIaUUpRoFUu6aBZHQKNpFQTmGM51fZQoaAZoCWgPQwgUz9kCAhByQJSGlFKUaBVLsGgWR0CjaRSVfNRndX2UKGgGaAloD0MIfzFbsupFc0CUhpRSlGgVS+ZoFkdAo2letU4rBnV9lChoBmgJaA9DCIuoiT6ff25AlIaUUpRoFUuRaBZHQKNpZz9S/CZ1fZQoaAZoCWgPQwit+IbCJxJ0QJSGlFKUaBVLzWgWR0CjaamZE2HddX2UKGgGaAloD0MI0o4bfrfmc0CUhpRSlGgVS8JoFkdAo2nlPpIMB3V9lChoBmgJaA9DCOSG3033ZXFAlIaUUpRoFUu2aBZHQKNp5u2JBPd1fZQoaAZoCWgPQwiKj0/IjhxxQJSGlFKUaBVLwmgWR0CjahZo4+8odX2UKGgGaAloD0MI2nIuxZXocECUhpRSlGgVS75oFkdAo2ocQAdXDHV9lChoBmgJaA9DCAtET8rkjXNAlIaUUpRoFUu9aBZHQKNqVuDzyz51fZQoaAZoCWgPQwg+6Nmsun9wQJSGlFKUaBVLp2gWR0CjamBd2PkrdX2UKGgGaAloD0MI/+cwX94XcUCUhpRSlGgVS61oFkdAo2p6up0fYHV9lChoBmgJaA9DCFuXGqGfX3BAlIaUUpRoFUujaBZHQKNqjktEofF1fZQoaAZoCWgPQwgrFVRUffdxQJSGlFKUaBVL2GgWR0Cja0MDwH7hdX2UKGgGaAloD0MIQRAgQ4eHc0CUhpRSlGgVS+poFkdAo2tmp84Pw3V9lChoBmgJaA9DCHgq4J7nfHFAlIaUUpRoFUvRaBZHQKNrbyjHn2Z1fZQoaAZoCWgPQwj5Zpsb0/NwQJSGlFKUaBVLv2gWR0Cja42oWHk+dX2UKGgGaAloD0MIHLPsSaDzcECUhpRSlGgVS8VoFkdAo2ulcyFfzHV9lChoBmgJaA9DCKD7cmb7P3NAlIaUUpRoFUvoaBZHQKNrsRYA80V1fZQoaAZoCWgPQwgzi1BsBe9yQJSGlFKUaBVLtGgWR0Cja/AR02cbdX2UKGgGaAloD0MI9BWkGQtecUCUhpRSlGgVS45oFkdAo2v9jVhCt3V9lChoBmgJaA9DCDcAGxChT3BAlIaUUpRoFUutaBZHQKNsETxG2Cx1fZQoaAZoCWgPQwi4sdmRKhhxQJSGlFKUaBVLsWgWR0CjbBcEeQuFdX2UKGgGaAloD0MI4ba28HwIckCUhpRSlGgVS9doFkdAo2wZ5mh/RXV9lChoBmgJaA9DCEVI3c4+03JAlIaUUpRoFUvUaBZHQKNsRnaFmFt1fZQoaAZoCWgPQwg1Jy8ywXpxQJSGlFKUaBVLqmgWR0CjbHMXBP9DdX2UKGgGaAloD0MIY1+y8eDHcUCUhpRSlGgVS7xoFkdAo2yRtk4FR3V9lChoBmgJaA9DCGcng6OkqnJAlIaUUpRoFUvWaBZHQKNstXZoPCl1fZQoaAZoCWgPQwhyN4jWioJgQJSGlFKUaBVN6ANoFkdAo2zAzWPLgXV9lChoBmgJaA9DCAndJXGWbHBAlIaUUpRoFUuWaBZHQKNs3n6l+E11fZQoaAZoCWgPQwj5Tsx6cQ5yQJSGlFKUaBVLqmgWR0CjbSsANoaldX2UKGgGaAloD0MIHLEWnwIVb0CUhpRSlGgVS6xoFkdAo21LZi/fwnV9lChoBmgJaA9DCK0W2GMiknFAlIaUUpRoFUuhaBZHQKNtUIMSbph1fZQoaAZoCWgPQwhd+wJ6YR9yQJSGlFKUaBVLvmgWR0CjbVh2wFC+dX2UKGgGaAloD0MI6e3PRcOkb0CUhpRSlGgVS6xoFkdAo21hIg/1QXV9lChoBmgJaA9DCB7FOeropnFAlIaUUpRoFUuaaBZHQKNtdNtZV4p1fZQoaAZoCWgPQwibOo+Kf+FxQJSGlFKUaBVLtGgWR0Cjbdr/sE7odX2UKGgGaAloD0MITQ8KStF6cUCUhpRSlGgVS9ZoFkdAo24cKXv6THV9lChoBmgJaA9DCI82jlgLTHFAlIaUUpRoFUvNaBZHQKNuGOZLIxR1fZQoaAZoCWgPQwgsmzkktRByQJSGlFKUaBVL22gWR0CjbkHxaxHHdX2UKGgGaAloD0MICKwcWqRec0CUhpRSlGgVS89oFkdAo25QKc/dI3V9lChoBmgJaA9DCED2eveH6nFAlIaUUpRoFUuraBZHQKNuXNwBHTZ1fZQoaAZoCWgPQwg4ns+A+hNzQJSGlFKUaBVLx2gWR0CjbmdCE6DHdX2UKGgGaAloD0MIUgyQaEI6c0CUhpRSlGgVS7xoFkdAo26URzzVc3V9lChoBmgJaA9DCNRi8DAt4nFAlIaUUpRoFUvMaBZHQKNukTxoZht1fZQoaAZoCWgPQwhAv+/ffPpwQJSGlFKUaBVLuWgWR0Cjbq6Zx7zDdX2UKGgGaAloD0MI7gkS252FcUCUhpRSlGgVS5JoFkdAo27oVqN6xHV9lChoBmgJaA9DCCUgJuGCBXJAlIaUUpRoFUuwaBZHQKNu6c+7lJZ1fZQoaAZoCWgPQwhBDHTtC1FwQJSGlFKUaBVLomgWR0CjbvKVpsXSdX2UKGgGaAloD0MIX9Gt1zSJcUCUhpRSlGgVS7RoFkdAo28UbxVhkXV9lChoBmgJaA9DCO8DkNrEunFAlIaUUpRoFUuPaBZHQKNvQshgVoJ1fZQoaAZoCWgPQwgQBMjQsVZ0QJSGlFKUaBVLzWgWR0Cjb17cwg1WdX2UKGgGaAloD0MI+RG/Yo1bckCUhpRSlGgVS9toFkdAo29sbedkKHV9lChoBmgJaA9DCOBHNey3KHFAlIaUUpRoFUuKaBZHQKNvan752yN1fZQoaAZoCWgPQwhBDd/C+mNxQJSGlFKUaBVLj2gWR0Cjb3wh4dIYdX2UKGgGaAloD0MI/n4xWzI1cECUhpRSlGgVS59oFkdAo2/B4D9wWHV9lChoBmgJaA9DCGdkkLvIGXFAlIaUUpRoFUuLaBZHQKNv3OIqLCN1fZQoaAZoCWgPQwhu4A7UKQ1yQJSGlFKUaBVLsWgWR0CjcBE2xY7rdX2UKGgGaAloD0MIGjBI+jTDckCUhpRSlGgVS8NoFkdAo3A2BBiTdXV9lChoBmgJaA9DCEPJ5NSOoXBAlIaUUpRoFUuiaBZHQKNwP24/eLx1fZQoaAZoCWgPQwhDGhU4WWdvQJSGlFKUaBVLkWgWR0CjcFkORT0hdX2UKGgGaAloD0MIcjJxqyDsb0CUhpRSlGgVS6NoFkdAo3B50hePaXV9lChoBmgJaA9DCO4h4Xt/eG9AlIaUUpRoFUuiaBZHQKNweJMxoIx1fZQoaAZoCWgPQwhoImx4utBxQJSGlFKUaBVL0GgWR0CjcJMZHd43dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 775, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 25, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (198 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.8952206574262, "std_reward": 14.699030551034376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T15:53:57.573444"}
|
simple_ppo_lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb715afd4ba4ba81e80695f0ecfc0a6915dd85e9d376e27b66921b4c80c18d67
|
3 |
+
size 147085
|
simple_ppo_lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
simple_ppo_lunar_lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4070fd3ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4070fd3d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4070fd3dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4070fd3e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4070fd3ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4070fd3f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4070fd8040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4070fd80d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4070fd8160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4070fd81f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4070fd8280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4070fd5090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671548696169918526,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI07hj0ZqlQ/neOuPUkUZL8/J4g9XxGQvAAAAAAAAAAAxk8Dvq9MRT0pSg0+ek2JvvMGlLwgxdA9AAAAAAAAAAAAcM86sK/BPyaBAjxCPu89qfOEu9uAxzsAAAAAAAAAADN7eT3nWl8/qj4nPpSDZL//ga49ko0qvQAAAAAAAAAALesVvryhHj2dvFc+mw18vsX4sLp7HfE8AAAAAAAAAACai2w9e4KHurJdg72yXYEwE3jMugbItTMAAIA/AACAP83CMTyPca8/kq2EPjKP+b6P8Ci7ecsdPQAAAAAAAAAAzUm3PIWjsLndni6+71iQPEiqrDslIHy9AACAPwAAgD8zWOc9OCC/PFim174dch2/MeGkPrg1l74AAAAAAACAP1MDDb70yZ09ZWuhPu6esr5rCs48FqUfPgAAAAAAAAAAjWGTPRnMLz/ybJo9tsFOvyQHRT2U9KU8AAAAAAAAAADNiNw9ZEO+P9YfMz8T9ho9VHxCvE6+dz0AAAAAAAAAAFMNLT7Z2H0/W56mPo42Nb9xaG8+KigjPgAAAAAAAAAAgO0bvSkAF7q7u9GyquwAMYQg5DpRCKwzAAAAAAAAgD+aERY7pN0hu2vMcTxLo7E8/eg9vNnMlz0AAIA/AACAPzPAgD3yzjE/rcydPSz2Xb/Ur5w9UqoDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI++WTFUPncECUhpRSlIwBbJRLrIwBdJRHQKNj9VPva111fZQoaAZoCWgPQwghdTv7CmJzQJSGlFKUaBVL72gWR0CjY/8UEgW8dX2UKGgGaAloD0MIx0eLM4YBckCUhpRSlGgVS7JoFkdAo2RPgP3BYXV9lChoBmgJaA9DCG2RtBu9t3NAlIaUUpRoFUvAaBZHQKNkVf7aZhN1fZQoaAZoCWgPQwh2Gf7TDSF0QJSGlFKUaBVL7GgWR0CjZInanJkodX2UKGgGaAloD0MIhjyCG6nfckCUhpRSlGgVS8doFkdAo2SZk078vXV9lChoBmgJaA9DCKRQFr4+ynFAlIaUUpRoFUvXaBZHQKNktdYW+Gp1fZQoaAZoCWgPQwjNr+YAwdZyQJSGlFKUaBVLpmgWR0CjZL/hl18tdX2UKGgGaAloD0MIh+C4jFu5cECUhpRSlGgVS4doFkdAo2TFwWFewHV9lChoBmgJaA9DCJTdzOgHw3FAlIaUUpRoFUvGaBZHQKNk3toi9qV1fZQoaAZoCWgPQwjoLomz4lhwQJSGlFKUaBVLpWgWR0CjZQs54nnddX2UKGgGaAloD0MI0NGqlrSbckCUhpRSlGgVS9doFkdAo2Vcb3oLX3V9lChoBmgJaA9DCH3O3a6XwnBAlIaUUpRoFUuMaBZHQKNl463AmAt1fZQoaAZoCWgPQwgXgbG+gQdHQJSGlFKUaBVLaWgWR0CjZfDBEa2ndX2UKGgGaAloD0MI7E0MyYmCcUCUhpRSlGgVS8RoFkdAo2X9/c32mHV9lChoBmgJaA9DCEnW4ejqT3RAlIaUUpRoFUv5aBZHQKNmCsGxD9h1fZQoaAZoCWgPQwhypgnbzzVzQJSGlFKUaBVLw2gWR0CjZjU3fhuPdX2UKGgGaAloD0MI5Lop5bXib0CUhpRSlGgVS6JoFkdAo2Zra4+bE3V9lChoBmgJaA9DCFmGONZFIXNAlIaUUpRoFUvoaBZHQKNmbrqMWGh1fZQoaAZoCWgPQwireCPziJhwQJSGlFKUaBVLsGgWR0CjZqCAMDwIdX2UKGgGaAloD0MIE51lFqG2ckCUhpRSlGgVS+5oFkdAo2a5JqZc9nV9lChoBmgJaA9DCMiW5esy+3FAlIaUUpRoFUu5aBZHQKNm1P6be/J1fZQoaAZoCWgPQwjGTngJDoRzQJSGlFKUaBVL6mgWR0CjZwPHLidbdX2UKGgGaAloD0MIaa1ocxwwckCUhpRSlGgVS8NoFkdAo2cfBi1Aq3V9lChoBmgJaA9DCJpEveCTN3JAlIaUUpRoFUvnaBZHQKNna0TDfm91fZQoaAZoCWgPQwgwoBfunAhzQJSGlFKUaBVL6mgWR0CjZ8GqPwNLdX2UKGgGaAloD0MIBHRfzizLcECUhpRSlGgVS6RoFkdAo2fVt65Xl3V9lChoBmgJaA9DCIMWEjD6BHNAlIaUUpRoFUvaaBZHQKNn6UMXrMV1fZQoaAZoCWgPQwjNHmgFBmhwQJSGlFKUaBVLtGgWR0CjZ/jbzshQdX2UKGgGaAloD0MIofMau8RDcECUhpRSlGgVS7JoFkdAo2gJ6hQFcXV9lChoBmgJaA9DCL+c2a6QUnJAlIaUUpRoFUu3aBZHQKNoRn8sMAp1fZQoaAZoCWgPQwieCyO9aPZyQJSGlFKUaBVL3GgWR0CjaJABDG96dX2UKGgGaAloD0MIONkG7gA2ckCUhpRSlGgVS8JoFkdAo2iapFTef3V9lChoBmgJaA9DCB7gSQvXLHFAlIaUUpRoFUu4aBZHQKNozOcDr7h1fZQoaAZoCWgPQwgaidAINh9zQJSGlFKUaBVL0mgWR0CjaMnp8neBdX2UKGgGaAloD0MIc56xL5lQcECUhpRSlGgVS8hoFkdAo2jfrIHTqnV9lChoBmgJaA9DCAPS/gfYLHFAlIaUUpRoFUu6aBZHQKNpFQTmGM51fZQoaAZoCWgPQwgUz9kCAhByQJSGlFKUaBVLsGgWR0CjaRSVfNRndX2UKGgGaAloD0MIfzFbsupFc0CUhpRSlGgVS+ZoFkdAo2letU4rBnV9lChoBmgJaA9DCIuoiT6ff25AlIaUUpRoFUuRaBZHQKNpZz9S/CZ1fZQoaAZoCWgPQwit+IbCJxJ0QJSGlFKUaBVLzWgWR0CjaamZE2HddX2UKGgGaAloD0MI0o4bfrfmc0CUhpRSlGgVS8JoFkdAo2nlPpIMB3V9lChoBmgJaA9DCOSG3033ZXFAlIaUUpRoFUu2aBZHQKNp5u2JBPd1fZQoaAZoCWgPQwiKj0/IjhxxQJSGlFKUaBVLwmgWR0CjahZo4+8odX2UKGgGaAloD0MI2nIuxZXocECUhpRSlGgVS75oFkdAo2ocQAdXDHV9lChoBmgJaA9DCAtET8rkjXNAlIaUUpRoFUu9aBZHQKNqVuDzyz51fZQoaAZoCWgPQwg+6Nmsun9wQJSGlFKUaBVLp2gWR0CjamBd2PkrdX2UKGgGaAloD0MI/+cwX94XcUCUhpRSlGgVS61oFkdAo2p6up0fYHV9lChoBmgJaA9DCFuXGqGfX3BAlIaUUpRoFUujaBZHQKNqjktEofF1fZQoaAZoCWgPQwgrFVRUffdxQJSGlFKUaBVL2GgWR0Cja0MDwH7hdX2UKGgGaAloD0MIQRAgQ4eHc0CUhpRSlGgVS+poFkdAo2tmp84Pw3V9lChoBmgJaA9DCHgq4J7nfHFAlIaUUpRoFUvRaBZHQKNrbyjHn2Z1fZQoaAZoCWgPQwj5Zpsb0/NwQJSGlFKUaBVLv2gWR0Cja42oWHk+dX2UKGgGaAloD0MIHLPsSaDzcECUhpRSlGgVS8VoFkdAo2ulcyFfzHV9lChoBmgJaA9DCKD7cmb7P3NAlIaUUpRoFUvoaBZHQKNrsRYA80V1fZQoaAZoCWgPQwgzi1BsBe9yQJSGlFKUaBVLtGgWR0Cja/AR02cbdX2UKGgGaAloD0MI9BWkGQtecUCUhpRSlGgVS45oFkdAo2v9jVhCt3V9lChoBmgJaA9DCDcAGxChT3BAlIaUUpRoFUutaBZHQKNsETxG2Cx1fZQoaAZoCWgPQwi4sdmRKhhxQJSGlFKUaBVLsWgWR0CjbBcEeQuFdX2UKGgGaAloD0MI4ba28HwIckCUhpRSlGgVS9doFkdAo2wZ5mh/RXV9lChoBmgJaA9DCEVI3c4+03JAlIaUUpRoFUvUaBZHQKNsRnaFmFt1fZQoaAZoCWgPQwg1Jy8ywXpxQJSGlFKUaBVLqmgWR0CjbHMXBP9DdX2UKGgGaAloD0MIY1+y8eDHcUCUhpRSlGgVS7xoFkdAo2yRtk4FR3V9lChoBmgJaA9DCGcng6OkqnJAlIaUUpRoFUvWaBZHQKNstXZoPCl1fZQoaAZoCWgPQwhyN4jWioJgQJSGlFKUaBVN6ANoFkdAo2zAzWPLgXV9lChoBmgJaA9DCAndJXGWbHBAlIaUUpRoFUuWaBZHQKNs3n6l+E11fZQoaAZoCWgPQwj5Tsx6cQ5yQJSGlFKUaBVLqmgWR0CjbSsANoaldX2UKGgGaAloD0MIHLEWnwIVb0CUhpRSlGgVS6xoFkdAo21LZi/fwnV9lChoBmgJaA9DCK0W2GMiknFAlIaUUpRoFUuhaBZHQKNtUIMSbph1fZQoaAZoCWgPQwhd+wJ6YR9yQJSGlFKUaBVLvmgWR0CjbVh2wFC+dX2UKGgGaAloD0MI6e3PRcOkb0CUhpRSlGgVS6xoFkdAo21hIg/1QXV9lChoBmgJaA9DCB7FOeropnFAlIaUUpRoFUuaaBZHQKNtdNtZV4p1fZQoaAZoCWgPQwibOo+Kf+FxQJSGlFKUaBVLtGgWR0Cjbdr/sE7odX2UKGgGaAloD0MITQ8KStF6cUCUhpRSlGgVS9ZoFkdAo24cKXv6THV9lChoBmgJaA9DCI82jlgLTHFAlIaUUpRoFUvNaBZHQKNuGOZLIxR1fZQoaAZoCWgPQwgsmzkktRByQJSGlFKUaBVL22gWR0CjbkHxaxHHdX2UKGgGaAloD0MICKwcWqRec0CUhpRSlGgVS89oFkdAo25QKc/dI3V9lChoBmgJaA9DCED2eveH6nFAlIaUUpRoFUuraBZHQKNuXNwBHTZ1fZQoaAZoCWgPQwg4ns+A+hNzQJSGlFKUaBVLx2gWR0CjbmdCE6DHdX2UKGgGaAloD0MIUgyQaEI6c0CUhpRSlGgVS7xoFkdAo26URzzVc3V9lChoBmgJaA9DCNRi8DAt4nFAlIaUUpRoFUvMaBZHQKNukTxoZht1fZQoaAZoCWgPQwhAv+/ffPpwQJSGlFKUaBVLuWgWR0Cjbq6Zx7zDdX2UKGgGaAloD0MI7gkS252FcUCUhpRSlGgVS5JoFkdAo27oVqN6xHV9lChoBmgJaA9DCCUgJuGCBXJAlIaUUpRoFUuwaBZHQKNu6c+7lJZ1fZQoaAZoCWgPQwhBDHTtC1FwQJSGlFKUaBVLomgWR0CjbvKVpsXSdX2UKGgGaAloD0MIX9Gt1zSJcUCUhpRSlGgVS7RoFkdAo28UbxVhkXV9lChoBmgJaA9DCO8DkNrEunFAlIaUUpRoFUuPaBZHQKNvQshgVoJ1fZQoaAZoCWgPQwgQBMjQsVZ0QJSGlFKUaBVLzWgWR0Cjb17cwg1WdX2UKGgGaAloD0MI+RG/Yo1bckCUhpRSlGgVS9toFkdAo29sbedkKHV9lChoBmgJaA9DCOBHNey3KHFAlIaUUpRoFUuKaBZHQKNvan752yN1fZQoaAZoCWgPQwhBDd/C+mNxQJSGlFKUaBVLj2gWR0Cjb3wh4dIYdX2UKGgGaAloD0MI/n4xWzI1cECUhpRSlGgVS59oFkdAo2/B4D9wWHV9lChoBmgJaA9DCGdkkLvIGXFAlIaUUpRoFUuLaBZHQKNv3OIqLCN1fZQoaAZoCWgPQwhu4A7UKQ1yQJSGlFKUaBVLsWgWR0CjcBE2xY7rdX2UKGgGaAloD0MIGjBI+jTDckCUhpRSlGgVS8NoFkdAo3A2BBiTdXV9lChoBmgJaA9DCEPJ5NSOoXBAlIaUUpRoFUuiaBZHQKNwP24/eLx1fZQoaAZoCWgPQwhDGhU4WWdvQJSGlFKUaBVLkWgWR0CjcFkORT0hdX2UKGgGaAloD0MIcjJxqyDsb0CUhpRSlGgVS6NoFkdAo3B50hePaXV9lChoBmgJaA9DCO4h4Xt/eG9AlIaUUpRoFUuiaBZHQKNweJMxoIx1fZQoaAZoCWgPQwhoImx4utBxQJSGlFKUaBVL0GgWR0CjcJMZHd43dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 775,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 25,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
simple_ppo_lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef3a5c7ed8218b6dceb4f3698ef5aedae1884542a1a736356a7fd3971eb6f198
|
3 |
+
size 87929
|
simple_ppo_lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcf953e2cacac9762cc3a4530a8ae08880ee4ef69eb148fb853b5a9d760c6776
|
3 |
+
size 43201
|
simple_ppo_lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
simple_ppo_lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|