File size: 4,867 Bytes
db98923 4159656 b5a82ba 4159656 db98923 75a67d1 4a56d1e db98923 ec0b8c2 d998ee1 6c93ca1 ec0b8c2 db98923 b5a82ba 4159656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
language:
- en
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: agiin-13.6B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.15
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.47
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
---
# Model Card for mncai/agiin-13.6B-v0.1
### Introduction of MindsAndCompany
https://mnc.ai/
We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence).
### Model Summary
This model was built based on the Mistral architecture. It was inspired by neural connection technology and rehabilitation therapy.
I have created a new model architecture that does not require pretraining, and training the model is sufficient with just one H100 for 7 hours.
### Data
Intel/orca_dpo_pairs (DPO)
### Surgery and Training
stack mistral 62 layers and DPO.
### How to Use
```python
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "๋ ๊ฐ์ ๊ตฌ๊ฐ ๊ฐ๊ฐ ์ง๋ฆ์ด 1, 2์ผ๋ ๋ ๊ตฌ์ ๋ถํผ๋ ๋ช๋ฐฐ์ง? ์ค๋ช
๋ ๊ฐ์ด ํด์ค."}
]
tokenizer = AutoTokenizer.from_pretrained(hf_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
pipeline = transformers.pipeline(
"text-generation",
model=hf_model,
tokenizer=tokenizer
)
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=512,
)
print(sequences[0]['generated_text'])
```
### Contact
If you have any questions, please raise an issue or contact us at [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mncai__agiin-13.6B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.40|
|AI2 Reasoning Challenge (25-Shot)|69.45|
|HellaSwag (10-Shot) |86.64|
|MMLU (5-Shot) |61.15|
|TruthfulQA (0-shot) |67.97|
|Winogrande (5-shot) |78.69|
|GSM8k (5-shot) |46.47|
|