File size: 4,867 Bytes
db98923
 
 
4159656
b5a82ba
 
4159656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db98923
 
 
 
 
 
 
 
 
 
 
75a67d1
4a56d1e
db98923
ec0b8c2
 
 
 
d998ee1
6c93ca1
ec0b8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db98923
b5a82ba
4159656
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- en
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: agiin-13.6B-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.15
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 67.97
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.47
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
      name: Open LLM Leaderboard
---

# Model Card for mncai/agiin-13.6B-v0.1

### Introduction of MindsAndCompany

https://mnc.ai/

We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence).

### Model Summary
This model was built based on the Mistral architecture. It was inspired by neural connection technology and rehabilitation therapy.
I have created a new model architecture that does not require pretraining, and training the model is sufficient with just one H100 for 7 hours.

### Data
Intel/orca_dpo_pairs (DPO) 

### Surgery and Training

stack mistral 62 layers and DPO.

### How to Use 

```python
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "๋‘ ๊ฐœ์˜ ๊ตฌ๊ฐ€ ๊ฐ๊ฐ ์ง€๋ฆ„์ด 1, 2์ผ๋•Œ ๋‘ ๊ตฌ์˜ ๋ถ€ํ”ผ๋Š” ๋ช‡๋ฐฐ์ง€? ์„ค๋ช…๋„ ๊ฐ™์ด ํ•ด์ค˜."}
]
tokenizer = AutoTokenizer.from_pretrained(hf_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

pipeline = transformers.pipeline(
    "text-generation",
    model=hf_model,
    tokenizer=tokenizer
)


sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=512,
)
print(sequences[0]['generated_text'])
```

### Contact 
If you have any questions, please raise an issue or contact us at [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mncai__agiin-13.6B-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.40|
|AI2 Reasoning Challenge (25-Shot)|69.45|
|HellaSwag (10-Shot)              |86.64|
|MMLU (5-Shot)                    |61.15|
|TruthfulQA (0-shot)              |67.97|
|Winogrande (5-shot)              |78.69|
|GSM8k (5-shot)                   |46.47|