--- language: - en license: apache-2.0 datasets: - Intel/orca_dpo_pairs model-index: - name: agiin-13.6B-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.97 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1 name: Open LLM Leaderboard --- # Model Card for mncai/agiin-13.6B-v0.1 ### Introduction of MindsAndCompany https://mnc.ai/ We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence). ### Model Summary This model was built based on the Mistral architecture. It was inspired by neural connection technology and rehabilitation therapy. I have created a new model architecture that does not require pretraining, and training the model is sufficient with just one H100 for 7 hours. ### Data Intel/orca_dpo_pairs (DPO) ### Surgery and Training stack mistral 62 layers and DPO. ### How to Use ```python message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "두 개의 구가 각각 지름이 1, 2일때 두 구의 부피는 몇배지? 설명도 같이 해줘."} ] tokenizer = AutoTokenizer.from_pretrained(hf_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) pipeline = transformers.pipeline( "text-generation", model=hf_model, tokenizer=tokenizer ) sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=512, ) print(sequences[0]['generated_text']) ``` ### Contact If you have any questions, please raise an issue or contact us at dwmyoung@mnc.ai # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mncai__agiin-13.6B-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |68.40| |AI2 Reasoning Challenge (25-Shot)|69.45| |HellaSwag (10-Shot) |86.64| |MMLU (5-Shot) |61.15| |TruthfulQA (0-shot) |67.97| |Winogrande (5-shot) |78.69| |GSM8k (5-shot) |46.47|