File size: 5,498 Bytes
7fc0f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# model.py

from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
import inspect
@dataclass
class GPTConfig:
    vocab_size: int = 50257
    block_size: int = 1024
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768 # = 64 * 12

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                     .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4)
        self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd)
        self.gelu = nn.GELU()
        self.NANOGPT_SCALE_INIT = 1
        
    def forward(self, x):
        x = self.gelu(self.c_fc(x))
        x = self.c_proj(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.mlp = MLP(config)
        
    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config, master_process):
        super().__init__()
        self.master_process = master_process
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd)            
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)
        if self.master_process:
            print(f"Model initialized. Model has {sum(p.numel() for p in self.parameters() if p.requires_grad):,} trainable parameters")

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.2
            if hasattr(module, 'NANOGPT_SCALE_INIT'):
                std*= (2 * self.config.n_layer)**-0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)            

    def forward(self, idx, targets=None):
        B, T = idx.size()
        assert T <= self.config.block_size, "Cannot forward, model block size is exhausted." 
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
        pos_emb = self.transformer.wpe(pos)
        tok_emb = self.transformer.wte(idx)
        x = tok_emb + pos_emb
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) 
        return logits, loss
    
    def configure_optimizers(self, weight_decay, learning_rate, device):
        param_dict = {pn: p for pn, p in self.named_parameters()}
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}

        decay_params = [p for n, p in param_dict.items() if p.dim() >=2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {"params": decay_params, "weight_decay": weight_decay},
            {"params": nodecay_params, "weight_decay": 0.0},
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        if self.master_process:
            print(f"Number of decay parameters tensors: {len(decay_params)}, Number of decay parameters: {num_decay_params:,}")
            print(f"Number of no decay parameters tensors: {len(nodecay_params)}, Number of no decay parameters: {num_nodecay_params:,}")

        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and 'cuda' == device
        if self.master_process:
            print(f'Using {"fused" if use_fused else "unfused"} AdamW')
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8)
        return optimizer