appoose commited on
Commit
48d4273
·
verified ·
1 Parent(s): 956a729

adding vram usage

Browse files
Files changed (1) hide show
  1. README.md +16 -10
README.md CHANGED
@@ -11,8 +11,24 @@ This is a version of the Mixtral-8x7B-Instruct-v0.1 model (https://huggingface.c
11
 
12
  More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit.
13
 
 
 
 
14
  The difference between this model and https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-HQQ is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB!
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ### Basic Usage
18
  To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:
@@ -38,16 +54,6 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
38
  ```
39
 
40
 
41
- ## Performance
42
- | Models | Mixtral Original | HQQ quantized |
43
- |-------------------|------------------|------------------|
44
- | ARC (25-shot) | 70.22 | 66.47 |
45
- | TruthfulQA-MC2 | 64.57 | 62.85 |
46
- | Winogrande (5-shot)| 81.36 | 79.40 |
47
-
48
- ----------------------------------------------------------------------------------------------------------------------------------
49
- </p>
50
-
51
  ### Quantization
52
 
53
  You can reproduce the model using the following quant configs:
 
11
 
12
  More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit.
13
 
14
+
15
+ ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/-gwGOZHDb9l5VxLexIhkM.gif)
16
+
17
  The difference between this model and https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-HQQ is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB!
18
 
19
+ ----------------------------------------------------------------------------------------------------------------------------------
20
+ </p>
21
+
22
+
23
+ ## Performance
24
+ | Models | Mixtral Original | HQQ quantized |
25
+ |-------------------|------------------|------------------|
26
+ | Runtime VRAM | 90 GB | <b>13 GB</b> |
27
+ | ARC (25-shot) | 70.22 | 66.47 |
28
+ | TruthfulQA-MC2 | 64.57 | 62.85 |
29
+ | Winogrande (5-shot)| 81.36 | 79.40 |
30
+
31
+
32
 
33
  ### Basic Usage
34
  To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:
 
54
  ```
55
 
56
 
 
 
 
 
 
 
 
 
 
 
57
  ### Quantization
58
 
59
  You can reproduce the model using the following quant configs: