--- license: apache-2.0 tags: - moe train: false inference: false pipeline_tag: text-generation --- ## Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ This is a version of the Mixtral-8x7B-Instruct-v0.1 model (https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit. ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/-gwGOZHDb9l5VxLexIhkM.gif) The difference between this model and https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-HQQ is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB! ----------------------------------------------------------------------------------------------------------------------------------

## Performance | Models | Mixtral Original | HQQ quantized | |-------------------|------------------|------------------| | Runtime VRAM | 90 GB | 13 GB | | ARC (25-shot) | 70.22 | 66.47 | | TruthfulQA-MC2 | 64.57 | 62.85 | | Winogrande (5-shot)| 81.36 | 79.40 | ### Basic Usage To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows: ``` Python import transformers from threading import Thread model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ' #Load the model from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = HQQModelForCausalLM.from_quantized(model_id) #Optional: set backend/compile #You will need to install CUDA kernels apriori # git clone https://github.com/mobiusml/hqq/ # cd hqq/kernels && python setup_cuda.py install from hqq.core.quantize import * HQQLinear.set_backend(HQQBackend.ATEN_BACKPROP) def chat_processor(chat, max_new_tokens=100, do_sample=True): tokenizer.use_default_system_prompt = False streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_params = dict( tokenizer(" [INST] " + chat + " [/INST] ", return_tensors="pt").to('cuda'), streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=0.90, top_k=50, temperature= 0.6, num_beams=1, repetition_penalty=1.2, ) t = Thread(target=model.generate, kwargs=generate_params) t.start() outputs = [] for text in streamer: outputs.append(text) print(text, end="", flush=True) return outputs ################################################################################################ #Generation outputs = chat_processor("How do I build a car?", max_new_tokens=1000, do_sample=False) ``` ### Quantization You can reproduce the model using the following quant configs: ``` Python from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) #Quantize params from hqq.core.quantize import * attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True) experts_params = BaseQuantizeConfig(nbits=2, group_size=16, offload_meta=True) attn_prams['scale_quant_params']['group_size'] = 256 attn_prams['zero_quant_params']['group_size'] = 256 quant_config = {} #Attention quant_config['self_attn.q_proj'] = attn_prams quant_config['self_attn.k_proj'] = attn_prams quant_config['self_attn.v_proj'] = attn_prams quant_config['self_attn.o_proj'] = attn_prams #Experts quant_config['block_sparse_moe.experts.w1'] = experts_params quant_config['block_sparse_moe.experts.w2'] = experts_params quant_config['block_sparse_moe.experts.w3'] = experts_params #Quantize model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16); model.eval(); ``` The code in github at https://github.com/mobiusml/hqq/blob/master/examples/hf/mixtral_13GB_example.py