Commit
·
9690bcc
1
Parent(s):
9272dc3
Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +20 -20
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1540.62 +/- 456.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e2c671453434a7aac68458a2fd0a7223a5d0744f621322a88241af91e5a4dd4
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -32,12 +32,12 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
-
"num_timesteps":
|
36 |
-
"_total_timesteps":
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
@@ -63,13 +63,13 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
-
"_n_updates":
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd780da30d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd780da3160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd780da31f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd780da3280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd780da3310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd780da33a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd780da3430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd780da34c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd780da3550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd780da35e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd780da3670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd780da3700>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd780d9c700>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"num_timesteps": 2500000,
|
36 |
+
"_total_timesteps": 2500000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1681334278511283627,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALGp1T5X/uk8UMINPxOEPz1t7ek/2oLfvrmq5LwsanO/GJ0dP5w/cbyj8SG/UroEP7b5470NE/G+It4CP3T6mTxKv4I/UzOAvmh4jr5Nw2o/VJEPv3GsLz/2A2o/B8T7v6lJbr8NyKS/TUr3Pqd+iT+czBe/cZEWv6LnDD+8zKE8a+5ovx/lMT/OGpA+MF5EvkGMBj8JBDG/vOiSPhonij5CXZe/z78PwLTG2z6+oYu/aM2bvrwaTb+Ue00/q48rvM89977XyzA/LpuJvrIcgL6xg4k/Dcikv01K9z5lUm6/g+3TP/7PAb+jLxE/Sg2qv/qeq78qTZS/IOPqPlINpz/7Yng+wbFxv9TUTz9XolO/ABhfP2cG1D9fpn/AodKjvURHkL8PaQNAfdj1v+a88b4WQ3JANp3LvkIoh749RxFAqUluv3nbRj8dggTAZVJuv9rZhr/bFqC/CydZPqTTMD9AW52/PA3Hvgb0oT5qLhk/BlgNP/4zG79PNPS+HqbQv5ldhb8qQBc/Sq7gPbVb0L/8j8++V/sLP/35Bj81q9W/zlLHPrXW1D8aQiq/ARu6P6lJbr8NyKS/TUr3PmVSbr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCkUC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3WDEvAAAAAATd/i/AAAAANsrg70AAAAAyubuPwAAAABsau69AAAAABur6T8AAAAA6r8cvQAAAAA+zti/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7bwtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK454j0AAAAAvwjavwAAAABiKTW9AAAAAJ0t/j8AAAAARlWIvQAAAABJCuU/AAAAAFOZtz0AAAAABUb9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM9dNDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBAbAo+AAAAAJ4U8b8AAAAAOGxkPQAAAACYCNw/AAAAABXeVzsAAAAAIMPgPwAAAABtD569AAAAALGV8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADT1GS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQABWvQAAAACcx96/AAAAAOhcPT0AAAAApVT9PwAAAAB4VQq+AAAAALKJ/D8AAAAAUY/RPQAAAAAk2+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcyAB2fTTiMAWyUTegDjAF0lEdAsJ+AFHJ9zHV9lChoBkdAmrwTGYKIBWgHTegDaAhHQLCgk7xd6cB1fZQoaAZHQJbhzYzzmOloB03oA2gIR0CwoXw8W9DhdX2UKGgGR0CZlvziCJ40aAdN6ANoCEdAsKOFjbzshXV9lChoBkdAldYcf7rLQ2gHTegDaAhHQLCm8vAGjbl1fZQoaAZHQJjY9RzijtZoB03oA2gIR0Cwp/u801qGdX2UKGgGR0CYkiJV81GcaAdN6ANoCEdAsKjV7/n4f3V9lChoBkdAmwy+hK15SmgHTegDaAhHQLCqOSUC7sh1fZQoaAZHQJu8C606YE5oB03oA2gIR0CwrMDfWMCLdX2UKGgGR0CcrwnrIHTraAdN6ANoCEdAsK3VYwIt2HV9lChoBkdAnWKsEeQuEmgHTegDaAhHQLCuqUe+23N1fZQoaAZHQJ2PNxm03OxoB03oA2gIR0CwsCEjHGS7dX2UKGgGR0CXvAK77Kq5aAdN6ANoCEdAsLQKlEZzgnV9lChoBkdAm+1tcnmaIGgHTegDaAhHQLC1HXYUWVN1fZQoaAZHQJsS1XDFZPloB03oA2gIR0CwtfO6mO2idX2UKGgGR0CYUeQNkOI7aAdN6ANoCEdAsLdYCaJAMXV9lChoBkdAmudXnlnyu2gHTegDaAhHQLC599FWn0l1fZQoaAZHQJrJhwsGxD9oB03oA2gIR0Cwuws0Ltu2dX2UKGgGR0CavvjOLR8daAdN6ANoCEdAsLvnEETxonV9lChoBkdAmavVvqC6H2gHTegDaAhHQLC9VZzxPO91fZQoaAZHQJee7Fm4AjpoB03oA2gIR0CwwN7paA4GdX2UKGgGR0CcSJB9Cu2aaAdN6ANoCEdAsMKFITXarXV9lChoBkdAmPrNf9gndGgHTegDaAhHQLDDbbmlqJx1fZQoaAZHQJlupvbXYlJoB03oA2gIR0CwxOSdrftQdX2UKGgGR0CbsN4O+ZgHaAdN6ANoCEdAsMd2Xw9aEHV9lChoBkdAmhiQ2Q4jr2gHTegDaAhHQLDIhcyWRih1fZQoaAZHQJvH4VuaWopoB03oA2gIR0CwyVxfKISEdX2UKGgGR0CdAKU3GXHBaAdN6ANoCEdAsMrD2AXl83V9lChoBkdAnb4j3/Pw/mgHTegDaAhHQLDNr/0ulGh1fZQoaAZHQJzkvoePq9poB03oA2gIR0Cwz1dKyv9tdX2UKGgGR0CdP7a/ATIvaAdN6ANoCEdAsNCotWdVenV9lChoBkdAm/OCz1K5CmgHTegDaAhHQLDSH9Mbm2d1fZQoaAZHQJ0vuVzIV/NoB03oA2gIR0Cw1MGQjlgddX2UKGgGR0CcXOysCDEnaAdN6ANoCEdAsNXW6e5Fw3V9lChoBkdAmo487yQPqmgHTegDaAhHQLDWsk6cRUZ1fZQoaAZHQJy+d0o0ALloB03oA2gIR0Cw2CaYmb9ZdX2UKGgGR0CdG2HLzPKMaAdN6ANoCEdAsNrEmplz2nV9lChoBkdAmsWSEDhcaGgHTegDaAhHQLDcROhkAgh1fZQoaAZHQJlnm0F8ohJoB03oA2gIR0Cw3aTYRNAUdX2UKGgGR0Ca86GaQV9GaAdN6ANoCEdAsN+gRtgrpnV9lChoBkdAm64xpg1FY2gHTegDaAhHQLDiTJa7mMh1fZQoaAZHQJlhbqnm7rdoB03oA2gIR0Cw42Md5prUdX2UKGgGR0CYtUVRUFSsaAdN6ANoCEdAsORDIS13MnV9lChoBkdAm63pSWJJoWgHTegDaAhHQLDluI8hcJN1fZQoaAZHQJw/51uBMBZoB03oA2gIR0Cw6F+hwl0HdX2UKGgGR0CdzEH31zySaAdN6ANoCEdAsOmb2RJVbXV9lChoBkdAnTIqT4cm0GgHTegDaAhHQLDq5aOxSpB1fZQoaAZHQJuvvaAWi11oB03oA2gIR0Cw7SVhG6PKdX2UKGgGR0CeS/4HHFP0aAdN6ANoCEdAsO/vuG9HtnV9lChoBkdAnsX1dcB2fWgHTegDaAhHQLDw/k2xY7t1fZQoaAZHQJvuQJlar3loB03oA2gIR0Cw8d7nX/YKdX2UKGgGR0Ce70u2JBPbaAdN6ANoCEdAsPNOfDk2gnV9lChoBkdAncye6Ae7tmgHTegDaAhHQLD13raM72d1fZQoaAZHQJ8m42gnMMZoB03oA2gIR0Cw9vIRVZLadX2UKGgGR0CdvwcMEzO5aAdN6ANoCEdAsPf205U96nV9lChoBkdAmytbyQPqcGgHTegDaAhHQLD6HQQ+UyJ1fZQoaAZHQJuVZNrTH81oB03oA2gIR0Cw/W7d8Aq/dX2UKGgGR0CeE68brC3xaAdN6ANoCEdAsP6B8rqdH3V9lChoBkdAnzs9NrTH82gHTegDaAhHQLD/cbVjI7x1fZQoaAZHQJ25htFa0QdoB03oA2gIR0CxAOhH5JsgdX2UKGgGR0CfgR/A0sOHaAdN6ANoCEdAsQOCd5IH1XV9lChoBkdAoFUJMvh60WgHTegDaAhHQLEEj+hoM8Z1fZQoaAZHQJySwIzFdcBoB03oA2gIR0CxBWmRq46PdX2UKGgGR0Cb05mpVCHAaAdN6ANoCEdAsQcwhRqGlHV9lChoBkdAnVFjX8O09mgHTegDaAhHQLEK4KoQ4CJ1fZQoaAZHQJxizt0FKTVoB03oA2gIR0CxC/B60IC2dX2UKGgGR0CXXQL8JlasaAdN6ANoCEdAsQzUXO4XoHV9lChoBkdAm94FZs9B8mgHTegDaAhHQLEOQ1c+qzZ1fZQoaAZHQJv+3ThHbypoB03oA2gIR0CxENbncL0BdX2UKGgGR0CePaR/ViF1aAdN6ANoCEdAsRHfLbHp8nV9lChoBkdAnMeS4e9zwWgHTegDaAhHQLESufOlfqp1fZQoaAZHQJ0tjDUExItoB03oA2gIR0CxFCnMUypJdX2UKGgGR0Cet5hFEy+IaAdN6ANoCEdAsRfxyYG+snV9lChoBkdAoBHAL1EmY2gHTegDaAhHQLEZNotL+P11fZQoaAZHQJwTQxXXAdpoB03oA2gIR0CxGhCgTRICdX2UKGgGR0CayFstkFwDaAdN6ANoCEdAsRt/8m8dxXV9lChoBkdAn2JinpB5X2gHTegDaAhHQLEeEl05lvt1fZQoaAZHQJ+ANc5bQkZoB03oA2gIR0CxHxvmYBvKdX2UKGgGR0Ce1XmFrVOLaAdN6ANoCEdAsR/tTS9dvHV9lChoBkdAnicn7YTTOWgHTegDaAhHQLEhSSm65G11fZQoaAZHQKAlCcvM8oxoB03oA2gIR0CxJHbVjI7vdX2UKGgGR0CcKGMbWEsbaAdN6ANoCEdAsSYZTbWVeXV9lChoBkdAnpDEOuq3mWgHTegDaAhHQLEnMzkZJkJ1fZQoaAZHQJ7V6eWfK6poB03oA2gIR0CxKJh20Re1dX2UKGgGR0CeQl9TP0I1aAdN6ANoCEdAsSsqzSkTH3V9lChoBkdAnYcbILgGbGgHTegDaAhHQLEsMz90ihZ1fZQoaAZHQJ4SaXQdCE9oB03oA2gIR0CxLQ3b7CSBdX2UKGgGR0CakM7aZhKEaAdN6ANoCEdAsS5wQI2OyXV9lChoBkdAkqnHc580DWgHTegDaAhHQLExIFN+LFZ1fZQoaAZHQJrw33Cbc45oB03oA2gIR0CxMrLO7g89dX2UKGgGR0CY6951/2CeaAdN6ANoCEdAsTQL1AZ88nV9lChoBkdAmVexHbypaWgHTegDaAhHQLE1zPZIxxl1fZQoaAZHQJXyKvnr6cloB03oA2gIR0CxOFNEsrd4dX2UKGgGR0CZ+UCIDYAbaAdN6ANoCEdAsTltSOzY3HV9lChoBkdAmiQF2vB7/mgHTegDaAhHQLE6RO0LMLZ1fZQoaAZHQJvH1+4LCvZoB03oA2gIR0CxO7IzeoDQdX2UKGgGR0CIjSXkYGdJaAdN6ANoCEdAsT5WGM4tH3V9lChoBkdAmgCncL0BfmgHTegDaAhHQLE/eMEA5rB1fZQoaAZHQJoUY8Md92JoB03oA2gIR0CxQKvcrRShdX2UKGgGR0CbmxoPCl7/aAdN6ANoCEdAsULR+2E0znVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 78125,
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c9ccefd22548a54d2a660b780e1c1663e35c00c74a97f642b60b834009c7d19
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5515cbcd2e0ba265bdb426eaadecf111bdb5d0c7ce5bb04dcc5b6016555d69b2
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbfa6cffdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbfa6cffe50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbfa6cffee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbfa6cfff70>", "_build": "<function ActorCriticPolicy._build at 0x7fbfa6d02040>", "forward": "<function ActorCriticPolicy.forward at 0x7fbfa6d020d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbfa6d02160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbfa6d021f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbfa6d02280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbfa6d02310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbfa6d023a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbfa6d02430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbfa6d034c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681314222629253209, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGdSg76NVixAa1kdwFTMkL/dE4Q/7y2DvLUZMcAZJq0+Ydywv6AFlbvowDm+nQkEPaKS3T/Kaes9lDINPxQv2z3BCqi/h/RBPFFdub8Buo8+XyojQJzLSbuomoY/XZ0fvzVuLT+RgKA+ZZYRP+ltab84NVo+k+hxP9NNVD+Dj8S/mZjkPs4xrcB4fCo+e0wGQDYZsr8tEcI9v7o6wAoe5Lyah+Y/aDsLvCEBWL/ldUrAngrGPwcGa73JGoU/aQAHvt1hrj9pWwRAzO/cvxQJzj6z8Ly/vihMwAUT4b/pbWm/72ucPiIT/D/9fyA+FIcFvycBkT6yj3g8DIHav9NfYL50Oq2/443FPsWuYj8Vhb0+/VHXP0oM4zxeRg8/Zv1cPyntqL/5coA9dxSFvj61oT8QASNAk4oTO9aQpD/NPY4+NW4tP5GAoD5llhE/6W1pv5AZ7z6VcSxAbD8bwMMLqr3rR+0/Vhujvm0n0z/Oi36+s3ywvxEZDruTCLa/FlaFvE6i5j/YnYW8bDMpvxnAcj/UKMU/VLOHvNL+Gz/ZMK+/oPAiQAuPcbmUPqk/iy2BPrPwvL+RgKA+ZZYRP2RgjD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqSJE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAL9CcPQAAAAC8h/+/AAAAAOnMVz0AAAAAWnf6PwAAAADWKgq9AAAAAPz04D8AAAAAhV/XvQAAAAAvqf2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPVWFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFiAU70AAAAAkmnyvwAAAABS+yO9AAAAABwh+T8AAAAAXvqMPQAAAADupeU/AAAAAAEEwr0AAAAAiK/+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM7LM7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBO92k9AAAAALHA4r8AAAAAxkh2OwAAAAAjP/g/AAAAAI8qoL0AAAAAzffoPwAAAAAiF4i8AAAAAK9O6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7Zy40AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+2i+vQAAAABABN2/AAAAAL+Xvz0AAAAAWCLfPwAAAAB181S9AAAAANTZ/z8AAAAAAbACPgAAAAAuQ+m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4dLNOdoWaMAWyUTegDjAF0lEdAr0apVOsT4HV9lChoBkdAkMAru+h4+2gHTegDaAhHQK9K7/qgRK91fZQoaAZHQJEvTR0EHMVoB03oA2gIR0CvUD8TBZZCdX2UKGgGR0CQFNn2qT8paAdN6ANoCEdAr1Kkb961LXV9lChoBkdAk3UJ+QU5/GgHTegDaAhHQK9TPdzGPxR1fZQoaAZHQJFs1ChN/ONoB03oA2gIR0CvV3xKpT/AdX2UKGgGR0CQxw3SKFZgaAdN6ANoCEdAr17/XAdn03V9lChoBkdAgM0t1IRRM2gHTegDaAhHQK9ij1bqyGB1fZQoaAZHQIksVYISlFdoB03oA2gIR0CvYxzFl05mdX2UKGgGR0BzxOOearmyaAdN6ANoCEdAr2eJBE8aGnV9lChoBkdAdq68FpwjuGgHTegDaAhHQK9s28oQWep1fZQoaAZHQIu/UnRb8m9oB03oA2gIR0Cvb0Zle4TcdX2UKGgGR0CHIV8QZn+RaAdN6ANoCEdAr2/VDlYEGXV9lChoBkdAbmcL9deIEmgHTegDaAhHQK90JqWTouB1fZQoaAZHQIJaW+M6zVtoB03oA2gIR0Cveqw7kn1GdX2UKGgGR0CLrfuVopQUaAdN6ANoCEdAr35wzrNW2nV9lChoBkdAiZXARChN/WgHTegDaAhHQK9/TjhDPWx1fZQoaAZHQIIeV+PRzBBoB03oA2gIR0Cvg89Mj/uLdX2UKGgGR0CKuJIZIg/1aAdN6ANoCEdAr4jdR51Ng3V9lChoBkdAhx/JcophF2gHTegDaAhHQK+LR7yhBZ91fZQoaAZHQIZVVPP9kz5oB03oA2gIR0Cvi9bfYSQHdX2UKGgGR0CI1IL5ylvZaAdN6ANoCEdAr5BHcDbJwXV9lChoBkdAgg7N2C/XXmgHTegDaAhHQK+WHsa86FN1fZQoaAZHQHjnJ1JUYKpoB03oA2gIR0Cvmcuv+wTudX2UKGgGR0CCYVYQrc0taAdN6ANoCEdAr5q6oESuhnV9lChoBkdAhqNhTwUg0WgHTegDaAhHQK+gmqZML4N1fZQoaAZHQINbty925hBoB03oA2gIR0CvpfIBJZntdX2UKGgGR0CADZ4W1twaaAdN6ANoCEdAr6hkYQ8OkXV9lChoBkdAiHq4D9wWFmgHTegDaAhHQK+o8Kohpxp1fZQoaAZHQIMtqS3b215oB03oA2gIR0CvrUzpHI6sdX2UKGgGR0CFdddsSCe3aAdN6ANoCEdAr7KmsDGLk3V9lChoBkdAkFNVSjxkNGgHTegDaAhHQK+2P4sVclh1fZQoaAZHQIXoQaP0Zm9oB03oA2gIR0CvtxU29+PSdX2UKGgGR0B0g/UBnzxxaAdN6ANoCEdAr72wWHk92XV9lChoBkfAPRBbSqlxfmgHS2VoCEdAr774NutOmHV9lChoBkfAP8/Xf642CWgHS1loCEdAr8Ae/+Kjz3V9lChoBkdAdT4pX6qKg2gHTegDaAhHQK/C9ARkEs91fZQoaAZHQHPGeU+s5n1oB03oA2gIR0CvxWXH7xd6dX2UKGgGR0CHpdUWEbo9aAdN6ANoCEdAr8X5BJI1+HV9lChoBkdAawEhf0Eov2gHTegDaAhHQK/MzAt4A0d1fZQoaAZHQHQ+ZntfG+9oB03oA2gIR0Cvz8bXHzYmdX2UKGgGR0Bt4bG5tm+TaAdN6ANoCEdAr9LnLzPKMnV9lChoBkdAhF4G5DqnnGgHTegDaAhHQK/TtER8MNN1fZQoaAZHQHLmQZ0jkdVoB03oA2gIR0Cv3T4zrNW3dX2UKGgGR0CFLuZ6Uqx1aAdN6ANoCEdAr+AYgLZzxXV9lChoBkdAhgbMLfDUE2gHTegDaAhHQK/io9KVY6p1fZQoaAZHQIjoPdl/YrdoB03oA2gIR0Cv4zbDuSfUdX2UKGgGR0CIO2qZtvXLaAdN6ANoCEdAr+neo5xR23V9lChoBkdAhGtdsSCe3GgHTegDaAhHQK/sqgKWszV1fZQoaAZHQIUg8h5gPVdoB03oA2gIR0Cv7yhK15SndX2UKGgGR0CDEdWPLgXNaAdN6ANoCEdAr+/1f1Hvt3V9lChoBkdAeN7G1x82JmgHTegDaAhHQK/6DfNRm9R1fZQoaAZHQHH97cfvF3poB03oA2gIR0Cv/QI3zcyndX2UKGgGR0B88HHmzSkTaAdN6ANoCEdAr/+Ff/m1Y3V9lChoBkdAasQSDAaegGgHTegDaAhHQLAADKvmozh1fZQoaAZHQFM20xM36yloB026AmgIR0CwAYhPO6d2dX2UKGgGR0CA4hgtvn8saAdN6ANoCEdAsATeuA7Pp3V9lChoBkdAceuHWBjFymgHTegDaAhHQLAGM9NN8E51fZQoaAZHQIvuqTMaCMBoB03oA2gIR0CwBnvyf+S9dX2UKGgGR0CLbVxe9i+daAdN6ANoCEdAsAh8ANoak3V9lChoBkdAaZRhOP/7zmgHTegDaAhHQLAM+hw2l2x1fZQoaAZHQIFvXCdjG1hoB03oA2gIR0CwDieG9HtndX2UKGgGR0B3Z0Ka5PM0aAdN6ANoCEdAsA5tGz8gp3V9lChoBkdAdezr4nF5wGgHTegDaAhHQLAP8N9ph4N1fZQoaAZHP9U189fTkQxoB0sVaAhHQLAQEgoPTXt1fZQoaAZHQHfe2CROk+JoB03oA2gIR0CwEzieyzHCdX2UKGgGR0B4TEFY+0PZaAdN6ANoCEdAsBR0vkBCD3V9lChoBkdAgonXDvVmSWgHTegDaAhHQLAUvFLWZqp1fZQoaAZHQI/EeLgn+hpoB03oA2gIR0CwFpPRqoIfdX2UKGgGR0CNJF8BuGbkaAdN6ANoCEdAsBsdLi++NHV9lChoBkdAjfvrvb48EGgHTegDaAhHQLAcV/s3Q2N1fZQoaAZHQIjpsQumJnBoB03oA2gIR0CwHKEU0vXcdX2UKGgGR0CKEIdGy5ZsaAdN6ANoCEdAsB4iCROk+HV9lChoBkdAi1FHdXT3I2gHTegDaAhHQLAhN8cuJ1t1fZQoaAZHQI2lBW5paidoB03oA2gIR0CwImlEE1VHdX2UKGgGR0CQcJ7ZnL7oaAdN6ANoCEdAsCKyOwPiDXV9lChoBkdAjKi0Gu9vj2gHTegDaAhHQLAkPu3MINV1fZQoaAZHQI34MmBvrGBoB03oA2gIR0CwKIIHTqjadX2UKGgGR0CMaFaoMrmRaAdN6ANoCEdAsCo3jMmnfnV9lChoBkdAkb2nVbzK92gHTegDaAhHQLAqemAbyYp1fZQoaAZHQJP/AxWT5ftoB03oA2gIR0CwLAtGqgh9dX2UKGgGR0CUgVPatcOcaAdN6ANoCEdAsC8W9pRGdHV9lChoBkdAhTQF1KXfImgHTegDaAhHQLAwRYjSofl1fZQoaAZHQJDLjTCtRvZoB03oA2gIR0CwMIkSuhbodX2UKGgGR0CL5rbGm1pkaAdN6ANoCEdAsDIeWfK6nXV9lChoBkdAhlflN1yNoGgHTd4CaAhHQLA1b1KoQ4F1fZQoaAZHQIubZR8+ialoB03oA2gIR0CwNahN/OMVdX2UKGgGR0B8B9MlC1JEaAdN6ANoCEdAsDd8wUQCjnV9lChoBkdAheSB3qzJIWgHTegDaAhHQLA5y/2TPjZ1fZQoaAZHQGk9NwrDqGFoB0v/aAhHQLA7YJT2nKp1fZQoaAZHQH5faYAsCkpoB03oA2gIR0CwPMN61LJ0dX2UKGgGR0CBy2E6DGtIaAdN6ANoCEdAsDzwJkXk53V9lChoBkdAfaCxCY1HfGgHTegDaAhHQLA+E/X5FgF1fZQoaAZHQIGX0vM8ox5oB027AmgIR0CwP5Fgx8D0dX2UKGgGR0B1etwkxASnaAdNzAFoCEdAsEDM54nndXV9lChoBkdAa06oc7yQP2gHTQ8BaAhHQLBBKemelKt1fZQoaAZHQG0RH5Jsfq5oB008AWgIR0CwQqvzBhx6dX2UKGgGR0CGGoz2vjffaAdN6ANoCEdAsEKvz+WGAXV9lChoBkdAfrd4nF5v+GgHTegDaAhHQLBC2MqjJuF1fZQoaAZHQGqOIg3cYZVoB00/AWgIR0CwRaBR/EwWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd780da30d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd780da3160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd780da31f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd780da3280>", "_build": "<function ActorCriticPolicy._build at 0x7fd780da3310>", "forward": "<function ActorCriticPolicy.forward at 0x7fd780da33a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd780da3430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd780da34c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd780da3550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd780da35e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd780da3670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd780da3700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd780d9c700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681334278511283627, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALGp1T5X/uk8UMINPxOEPz1t7ek/2oLfvrmq5LwsanO/GJ0dP5w/cbyj8SG/UroEP7b5470NE/G+It4CP3T6mTxKv4I/UzOAvmh4jr5Nw2o/VJEPv3GsLz/2A2o/B8T7v6lJbr8NyKS/TUr3Pqd+iT+czBe/cZEWv6LnDD+8zKE8a+5ovx/lMT/OGpA+MF5EvkGMBj8JBDG/vOiSPhonij5CXZe/z78PwLTG2z6+oYu/aM2bvrwaTb+Ue00/q48rvM89977XyzA/LpuJvrIcgL6xg4k/Dcikv01K9z5lUm6/g+3TP/7PAb+jLxE/Sg2qv/qeq78qTZS/IOPqPlINpz/7Yng+wbFxv9TUTz9XolO/ABhfP2cG1D9fpn/AodKjvURHkL8PaQNAfdj1v+a88b4WQ3JANp3LvkIoh749RxFAqUluv3nbRj8dggTAZVJuv9rZhr/bFqC/CydZPqTTMD9AW52/PA3Hvgb0oT5qLhk/BlgNP/4zG79PNPS+HqbQv5ldhb8qQBc/Sq7gPbVb0L/8j8++V/sLP/35Bj81q9W/zlLHPrXW1D8aQiq/ARu6P6lJbr8NyKS/TUr3PmVSbr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCkUC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3WDEvAAAAAATd/i/AAAAANsrg70AAAAAyubuPwAAAABsau69AAAAABur6T8AAAAA6r8cvQAAAAA+zti/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7bwtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK454j0AAAAAvwjavwAAAABiKTW9AAAAAJ0t/j8AAAAARlWIvQAAAABJCuU/AAAAAFOZtz0AAAAABUb9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM9dNDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBAbAo+AAAAAJ4U8b8AAAAAOGxkPQAAAACYCNw/AAAAABXeVzsAAAAAIMPgPwAAAABtD569AAAAALGV8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADT1GS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQABWvQAAAACcx96/AAAAAOhcPT0AAAAApVT9PwAAAAB4VQq+AAAAALKJ/D8AAAAAUY/RPQAAAAAk2+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcyAB2fTTiMAWyUTegDjAF0lEdAsJ+AFHJ9zHV9lChoBkdAmrwTGYKIBWgHTegDaAhHQLCgk7xd6cB1fZQoaAZHQJbhzYzzmOloB03oA2gIR0CwoXw8W9DhdX2UKGgGR0CZlvziCJ40aAdN6ANoCEdAsKOFjbzshXV9lChoBkdAldYcf7rLQ2gHTegDaAhHQLCm8vAGjbl1fZQoaAZHQJjY9RzijtZoB03oA2gIR0Cwp/u801qGdX2UKGgGR0CYkiJV81GcaAdN6ANoCEdAsKjV7/n4f3V9lChoBkdAmwy+hK15SmgHTegDaAhHQLCqOSUC7sh1fZQoaAZHQJu8C606YE5oB03oA2gIR0CwrMDfWMCLdX2UKGgGR0CcrwnrIHTraAdN6ANoCEdAsK3VYwIt2HV9lChoBkdAnWKsEeQuEmgHTegDaAhHQLCuqUe+23N1fZQoaAZHQJ2PNxm03OxoB03oA2gIR0CwsCEjHGS7dX2UKGgGR0CXvAK77Kq5aAdN6ANoCEdAsLQKlEZzgnV9lChoBkdAm+1tcnmaIGgHTegDaAhHQLC1HXYUWVN1fZQoaAZHQJsS1XDFZPloB03oA2gIR0CwtfO6mO2idX2UKGgGR0CYUeQNkOI7aAdN6ANoCEdAsLdYCaJAMXV9lChoBkdAmudXnlnyu2gHTegDaAhHQLC599FWn0l1fZQoaAZHQJrJhwsGxD9oB03oA2gIR0Cwuws0Ltu2dX2UKGgGR0CavvjOLR8daAdN6ANoCEdAsLvnEETxonV9lChoBkdAmavVvqC6H2gHTegDaAhHQLC9VZzxPO91fZQoaAZHQJee7Fm4AjpoB03oA2gIR0CwwN7paA4GdX2UKGgGR0CcSJB9Cu2aaAdN6ANoCEdAsMKFITXarXV9lChoBkdAmPrNf9gndGgHTegDaAhHQLDDbbmlqJx1fZQoaAZHQJlupvbXYlJoB03oA2gIR0CwxOSdrftQdX2UKGgGR0CbsN4O+ZgHaAdN6ANoCEdAsMd2Xw9aEHV9lChoBkdAmhiQ2Q4jr2gHTegDaAhHQLDIhcyWRih1fZQoaAZHQJvH4VuaWopoB03oA2gIR0CwyVxfKISEdX2UKGgGR0CdAKU3GXHBaAdN6ANoCEdAsMrD2AXl83V9lChoBkdAnb4j3/Pw/mgHTegDaAhHQLDNr/0ulGh1fZQoaAZHQJzkvoePq9poB03oA2gIR0Cwz1dKyv9tdX2UKGgGR0CdP7a/ATIvaAdN6ANoCEdAsNCotWdVenV9lChoBkdAm/OCz1K5CmgHTegDaAhHQLDSH9Mbm2d1fZQoaAZHQJ0vuVzIV/NoB03oA2gIR0Cw1MGQjlgddX2UKGgGR0CcXOysCDEnaAdN6ANoCEdAsNXW6e5Fw3V9lChoBkdAmo487yQPqmgHTegDaAhHQLDWsk6cRUZ1fZQoaAZHQJy+d0o0ALloB03oA2gIR0Cw2CaYmb9ZdX2UKGgGR0CdG2HLzPKMaAdN6ANoCEdAsNrEmplz2nV9lChoBkdAmsWSEDhcaGgHTegDaAhHQLDcROhkAgh1fZQoaAZHQJlnm0F8ohJoB03oA2gIR0Cw3aTYRNAUdX2UKGgGR0Ca86GaQV9GaAdN6ANoCEdAsN+gRtgrpnV9lChoBkdAm64xpg1FY2gHTegDaAhHQLDiTJa7mMh1fZQoaAZHQJlhbqnm7rdoB03oA2gIR0Cw42Md5prUdX2UKGgGR0CYtUVRUFSsaAdN6ANoCEdAsORDIS13MnV9lChoBkdAm63pSWJJoWgHTegDaAhHQLDluI8hcJN1fZQoaAZHQJw/51uBMBZoB03oA2gIR0Cw6F+hwl0HdX2UKGgGR0CdzEH31zySaAdN6ANoCEdAsOmb2RJVbXV9lChoBkdAnTIqT4cm0GgHTegDaAhHQLDq5aOxSpB1fZQoaAZHQJuvvaAWi11oB03oA2gIR0Cw7SVhG6PKdX2UKGgGR0CeS/4HHFP0aAdN6ANoCEdAsO/vuG9HtnV9lChoBkdAnsX1dcB2fWgHTegDaAhHQLDw/k2xY7t1fZQoaAZHQJvuQJlar3loB03oA2gIR0Cw8d7nX/YKdX2UKGgGR0Ce70u2JBPbaAdN6ANoCEdAsPNOfDk2gnV9lChoBkdAncye6Ae7tmgHTegDaAhHQLD13raM72d1fZQoaAZHQJ8m42gnMMZoB03oA2gIR0Cw9vIRVZLadX2UKGgGR0CdvwcMEzO5aAdN6ANoCEdAsPf205U96nV9lChoBkdAmytbyQPqcGgHTegDaAhHQLD6HQQ+UyJ1fZQoaAZHQJuVZNrTH81oB03oA2gIR0Cw/W7d8Aq/dX2UKGgGR0CeE68brC3xaAdN6ANoCEdAsP6B8rqdH3V9lChoBkdAnzs9NrTH82gHTegDaAhHQLD/cbVjI7x1fZQoaAZHQJ25htFa0QdoB03oA2gIR0CxAOhH5JsgdX2UKGgGR0CfgR/A0sOHaAdN6ANoCEdAsQOCd5IH1XV9lChoBkdAoFUJMvh60WgHTegDaAhHQLEEj+hoM8Z1fZQoaAZHQJySwIzFdcBoB03oA2gIR0CxBWmRq46PdX2UKGgGR0Cb05mpVCHAaAdN6ANoCEdAsQcwhRqGlHV9lChoBkdAnVFjX8O09mgHTegDaAhHQLEK4KoQ4CJ1fZQoaAZHQJxizt0FKTVoB03oA2gIR0CxC/B60IC2dX2UKGgGR0CXXQL8JlasaAdN6ANoCEdAsQzUXO4XoHV9lChoBkdAm94FZs9B8mgHTegDaAhHQLEOQ1c+qzZ1fZQoaAZHQJv+3ThHbypoB03oA2gIR0CxENbncL0BdX2UKGgGR0CePaR/ViF1aAdN6ANoCEdAsRHfLbHp8nV9lChoBkdAnMeS4e9zwWgHTegDaAhHQLESufOlfqp1fZQoaAZHQJ0tjDUExItoB03oA2gIR0CxFCnMUypJdX2UKGgGR0Cet5hFEy+IaAdN6ANoCEdAsRfxyYG+snV9lChoBkdAoBHAL1EmY2gHTegDaAhHQLEZNotL+P11fZQoaAZHQJwTQxXXAdpoB03oA2gIR0CxGhCgTRICdX2UKGgGR0CayFstkFwDaAdN6ANoCEdAsRt/8m8dxXV9lChoBkdAn2JinpB5X2gHTegDaAhHQLEeEl05lvt1fZQoaAZHQJ+ANc5bQkZoB03oA2gIR0CxHxvmYBvKdX2UKGgGR0Ce1XmFrVOLaAdN6ANoCEdAsR/tTS9dvHV9lChoBkdAnicn7YTTOWgHTegDaAhHQLEhSSm65G11fZQoaAZHQKAlCcvM8oxoB03oA2gIR0CxJHbVjI7vdX2UKGgGR0CcKGMbWEsbaAdN6ANoCEdAsSYZTbWVeXV9lChoBkdAnpDEOuq3mWgHTegDaAhHQLEnMzkZJkJ1fZQoaAZHQJ7V6eWfK6poB03oA2gIR0CxKJh20Re1dX2UKGgGR0CeQl9TP0I1aAdN6ANoCEdAsSsqzSkTH3V9lChoBkdAnYcbILgGbGgHTegDaAhHQLEsMz90ihZ1fZQoaAZHQJ4SaXQdCE9oB03oA2gIR0CxLQ3b7CSBdX2UKGgGR0CakM7aZhKEaAdN6ANoCEdAsS5wQI2OyXV9lChoBkdAkqnHc580DWgHTegDaAhHQLExIFN+LFZ1fZQoaAZHQJrw33Cbc45oB03oA2gIR0CxMrLO7g89dX2UKGgGR0CY6951/2CeaAdN6ANoCEdAsTQL1AZ88nV9lChoBkdAmVexHbypaWgHTegDaAhHQLE1zPZIxxl1fZQoaAZHQJXyKvnr6cloB03oA2gIR0CxOFNEsrd4dX2UKGgGR0CZ+UCIDYAbaAdN6ANoCEdAsTltSOzY3HV9lChoBkdAmiQF2vB7/mgHTegDaAhHQLE6RO0LMLZ1fZQoaAZHQJvH1+4LCvZoB03oA2gIR0CxO7IzeoDQdX2UKGgGR0CIjSXkYGdJaAdN6ANoCEdAsT5WGM4tH3V9lChoBkdAmgCncL0BfmgHTegDaAhHQLE/eMEA5rB1fZQoaAZHQJoUY8Md92JoB03oA2gIR0CxQKvcrRShdX2UKGgGR0CbmxoPCl7/aAdN6ANoCEdAsULR+2E0znVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1540.6238387545804, "std_reward": 456.5922029443247, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T22:37:15.016004"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2170
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d933bde387465c4c6a959edfce667356e907aa6667ba22019965b0f84a65936
|
3 |
size 2170
|