mobiusmatt
commited on
Commit
·
cde5d76
1
Parent(s):
9490a21
xtra training D:
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- rl_agent_1.zip +2 -2
- rl_agent_1/data +24 -24
- rl_agent_1/policy.optimizer.pth +2 -2
- rl_agent_1/policy.pth +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 290.56 +/- 22.68
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23186e0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23186e0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23186e0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23186e0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f23186e0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f23186e6040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23186e60d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23186e6160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23186e61f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23186e6280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23186e6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f23186df480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671674694153439206, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHCbir7bi0k/6m5HPfYYUb5hEZu8/iirPQAAAAAAAAAAM/eQPMMBAbpop5s7IpctNShzn7qKvLO6AACAPwAAgD+Nj4y9UvDpuZIUTTuetT+260Gbum22broAAIA/AACAP/JByL541jY//rKAvKL/qL3+HuG9FT5hvQAAAAAAAAAAzeBUPtegArsSxXC84BrfvHCMqLyCasG9AAAAAAAAgD8AT3i9H4qUu+pQcz1OjoS9oEm2vGWyV74AAIA/AACAP+Zyrb1SGNG5DXEhOZrfF7YhuDS7ABgOtQAAgD8AAIA/M1uiu+HwjbqbnVI8tIPKtU7firqeXsa0AACAPwAAgD9TqAY+25eBP/58Xz7L8X2+SLYqPU688bwAAAAAAAAAAADkPD0Kkx86iPxavA/2hjz6NUa7Y74gPQAAgD8AAAAA2neuPkT9gz1Am5Y5Zi34Nz2nUT7b6d64AACAPwAAgD+aWTG89tReuuqOBjykMWC1fHAAuoYYSbQAAIA/AACAP7PZkD17tIK64t+Tuj6JI7Ygj3Q79sKoOQAAgD8AAIA/HqaJviGiOb265da9LcIavQVuoD7wnPE8AAAAAAAAAADAUk8+cVFLOsq7ljt6c6c4uFYPPD6BMroAAIA/AACAP2Yckj4E8OY+V6hGvT2eLr5Gg6M8csY2PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTvhJTipSUCUhpRSlIwBbJRN6AOMAXSUR0CA/xhCtzS1dX2UKGgGaAloD0MI6Iam7PQ7V0CUhpRSlGgVTegDaBZHQIEMqYZ2pyZ1fZQoaAZoCWgPQwjYnINnQmRSQJSGlFKUaBVN6ANoFkdAgQy0PpY9xXV9lChoBmgJaA9DCFCJ6xhX1EtAlIaUUpRoFU3oA2gWR0CBDNc45tFbdX2UKGgGaAloD0MI5+PaUDHaUUCUhpRSlGgVTegDaBZHQIENC/mDDj11fZQoaAZoCWgPQwi46GSp9T4vwJSGlFKUaBVNVQFoFkdAgRWfMW43FXV9lChoBmgJaA9DCKVpUDQPiDtAlIaUUpRoFU3oA2gWR0CBJkjRlYlqdX2UKGgGaAloD0MInE1HADf9YcCUhpRSlGgVTQQBaBZHQIEtZv5xiod1fZQoaAZoCWgPQwjMQ6Z8CAZLQJSGlFKUaBVN6ANoFkdAgS+kEcKgI3V9lChoBmgJaA9DCAhZFkz8VThAlIaUUpRoFU3oA2gWR0CBU2avRqoIdX2UKGgGaAloD0MI3Eqvzca4QkCUhpRSlGgVTegDaBZHQIFTb7di2Dx1fZQoaAZoCWgPQwit+lxtxVBGQJSGlFKUaBVN6ANoFkdAgVN0V8CxNnV9lChoBmgJaA9DCIHPDyOE8mBAlIaUUpRoFU3oA2gWR0CBU4HEdeY2dX2UKGgGaAloD0MIhNbDl4mSFECUhpRSlGgVTegDaBZHQIFThnzxwyZ1fZQoaAZoCWgPQwgdIm5OJe86QJSGlFKUaBVNCwFoFkdAgVdTbN8mbHV9lChoBmgJaA9DCAvw3eaN3FBAlIaUUpRoFU3oA2gWR0CBeldv863idX2UKGgGaAloD0MI0sWmlULbVECUhpRSlGgVTegDaBZHQIF/1vKlpGp1fZQoaAZoCWgPQwgLem8MAShDQJSGlFKUaBVNPQFoFkdAgYKC9ytFKHV9lChoBmgJaA9DCMsUcxB0jlRAlIaUUpRoFU3oA2gWR0CBhh92HLzPdX2UKGgGaAloD0MIMzffiO4oVkCUhpRSlGgVTegDaBZHQIGM17F85S51fZQoaAZoCWgPQwiOWfYksJkgwJSGlFKUaBVNlgFoFkdAgY/GYKIBR3V9lChoBmgJaA9DCPxuumWHj1BAlIaUUpRoFU3oA2gWR0CBnJ1RLsa9dX2UKGgGaAloD0MIS7GjcaigWECUhpRSlGgVTegDaBZHQIGcxn3+MqB1fZQoaAZoCWgPQwhNnx1wXZlbQJSGlFKUaBVN6ANoFkdAgZ0L1mJ3xHV9lChoBmgJaA9DCAppjUEnj1VAlIaUUpRoFU3oA2gWR0CBpxgIhQnAdX2UKGgGaAloD0MI6KIh41F8UECUhpRSlGgVTegDaBZHQIG4Qi9qUNd1fZQoaAZoCWgPQwiQ2O4eoMVdQJSGlFKUaBVN6ANoFkdAgb5p53Tuv3V9lChoBmgJaA9DCOFdLuI7V1XAlIaUUpRoFU0jAWgWR0CBwpBInSfEdX2UKGgGaAloD0MIMnGrIAb+P0CUhpRSlGgVTegDaBZHQIHid6mfoRt1fZQoaAZoCWgPQwhyiLg5lYlYQJSGlFKUaBVN6ANoFkdAgeKADaGpM3V9lChoBmgJaA9DCKtefqfJ5D5AlIaUUpRoFU3oA2gWR0CB4o2/BWPtdX2UKGgGaAloD0MId/S/XIuQU0CUhpRSlGgVTegDaBZHQIHmtNpM6BB1fZQoaAZoCWgPQwjY74l1qvQ4QJSGlFKUaBVNcgFoFkdAge0pyp71I3V9lChoBmgJaA9DCMgIqHAEN1NAlIaUUpRoFU3oA2gWR0CCwkDTz/ZNdX2UKGgGaAloD0MIC/Dd5o3rSECUhpRSlGgVTegDaBZHQILHWrbQC0Z1fZQoaAZoCWgPQwiDiqpf6cNbQJSGlFKUaBVN6ANoFkdAgsm/YSQHRnV9lChoBmgJaA9DCOjYQSWuN1xAlIaUUpRoFU3oA2gWR0CCzQpbUwztdX2UKGgGaAloD0MInWfsSzYDVUCUhpRSlGgVTegDaBZHQILS/gR9PUN1fZQoaAZoCWgPQwjy07g3v8pZQJSGlFKUaBVN6ANoFkdAgtWrQHAymHV9lChoBmgJaA9DCP7RN2ka8FFAlIaUUpRoFU3oA2gWR0CC4JzuF6AwdX2UKGgGaAloD0MI/MitSbcVQ0CUhpRSlGgVTegDaBZHQILg/uZ1FH91fZQoaAZoCWgPQwgAjj17LnRbQJSGlFKUaBVN6ANoFkdAgutvbGm1pnV9lChoBmgJaA9DCG2RtBt9YlNAlIaUUpRoFU3oA2gWR0CDBTseGO+7dX2UKGgGaAloD0MIQtKnVfQvWsCUhpRSlGgVTf8CaBZHQIMHnuuzQeF1fZQoaAZoCWgPQwhJKlPMQcFdQJSGlFKUaBVN6ANoFkdAgwrc+aBqbnV9lChoBmgJaA9DCBmto6oJ91RAlIaUUpRoFU3oA2gWR0CDLxzZpSJkdX2UKGgGaAloD0MI9RH4w899Q0CUhpRSlGgVTegDaBZHQIMvMq6OHWV1fZQoaAZoCWgPQwiSek/ltIlSQJSGlFKUaBVN6ANoFkdAgzPTJIUah3V9lChoBmgJaA9DCNZXVwVqr1xAlIaUUpRoFU3oA2gWR0CDO2xi5NGmdX2UKGgGaAloD0MI0y07xD8sEcCUhpRSlGgVTZcBaBZHQINIQF5fMOh1fZQoaAZoCWgPQwhTzaylgC5gQJSGlFKUaBVN6ANoFkdAg1rYsVclgXV9lChoBmgJaA9DCB9I3jmUe0pAlIaUUpRoFU3oA2gWR0CDYKpwS8J2dX2UKGgGaAloD0MI4IJsWb4cW0CUhpRSlGgVTegDaBZHQINjdSbYsd11fZQoaAZoCWgPQwiT/l4KD1tZQJSGlFKUaBVN6ANoFkdAg2clEy+HrXV9lChoBmgJaA9DCL9jeOxnwV1AlIaUUpRoFU3oA2gWR0CDbmK/EfkndX2UKGgGaAloD0MIKXrgY7DMS0CUhpRSlGgVTegDaBZHQINySHIp6Qh1fZQoaAZoCWgPQwgJ/OHnv31LQJSGlFKUaBVN6ANoFkdAg4JZBsyi23V9lChoBmgJaA9DCOgVTz3SL1VAlIaUUpRoFU3oA2gWR0CDgvw+dK/VdX2UKGgGaAloD0MIK78MxohqU0CUhpRSlGgVTegDaBZHQIOQE7hegL91fZQoaAZoCWgPQwjjNEQV/sdVQJSGlFKUaBVN6ANoFkdAg6klT3qRl3V9lChoBmgJaA9DCFWIR+LlN0tAlIaUUpRoFU3oA2gWR0CDq9OP/7zkdX2UKGgGaAloD0MIjWMke4QNV0CUhpRSlGgVTegDaBZHQIPORc9nscB1fZQoaAZoCWgPQwijzAaZZLpVQJSGlFKUaBVN6ANoFkdAg85bEYO2A3V9lChoBmgJaA9DCET3rGu0AFdAlIaUUpRoFU3oA2gWR0CD0ze0G/vfdX2UKGgGaAloD0MI6kDWU6vdWkCUhpRSlGgVTegDaBZHQIPayNp/PPd1fZQoaAZoCWgPQwgHYtnMIRhRQJSGlFKUaBVN6ANoFkdAhKIUypJf6XV9lChoBmgJaA9DCA5lqIqpCF9AlIaUUpRoFU3oA2gWR0CEs2VVxS5zdX2UKGgGaAloD0MIa5vicVErS0CUhpRSlGgVTegDaBZHQIS44VZcLSh1fZQoaAZoCWgPQwg8okJ1cwlWQJSGlFKUaBVN6ANoFkdAhLufY8Md93V9lChoBmgJaA9DCFkWTPxRy1hAlIaUUpRoFU3oA2gWR0CEvzk5IYm+dX2UKGgGaAloD0MI/KiG/Z7hV0CUhpRSlGgVTegDaBZHQITFP3JxNqR1fZQoaAZoCWgPQwiuZwjHLNtRQJSGlFKUaBVN6ANoFkdAhMgCyprDZXV9lChoBmgJaA9DCPA0mfG2MVlAlIaUUpRoFU3oA2gWR0CE02PWhAW0dX2UKGgGaAloD0MISZ7r+3DLVUCUhpRSlGgVTegDaBZHQITTx3HJcPh1fZQoaAZoCWgPQwjKbJBJRtJbQJSGlFKUaBVN6ANoFkdAhN799c8klnV9lChoBmgJaA9DCIsaTMPwwlZAlIaUUpRoFU3oA2gWR0CE+6V8CxNZdX2UKGgGaAloD0MIuCBblq/nXECUhpRSlGgVTegDaBZHQIT+1OO801t1fZQoaAZoCWgPQwhFEyhikXllQJSGlFKUaBVNfwJoFkdAhQEK0UoKD3V9lChoBmgJaA9DCPLTuDe/fVpAlIaUUpRoFU3oA2gWR0CFJIHxjJ+2dX2UKGgGaAloD0MIwy0fSUk5UkCUhpRSlGgVTegDaBZHQIUknEAHVwx1fZQoaAZoCWgPQwi6MT1hidhYQJSGlFKUaBVN6ANoFkdAhSnRm9QGfXV9lChoBmgJaA9DCJ5cUyCzQ1NAlIaUUpRoFU3oA2gWR0CFMhAxi5NHdX2UKGgGaAloD0MIO3MPCd8LFcCUhpRSlGgVTWMBaBZHQIU75z90ihZ1fZQoaAZoCWgPQwjVJHhDGgZRQJSGlFKUaBVN6ANoFkdAhVFJhfBvaXV9lChoBmgJaA9DCBE10eejMF1AlIaUUpRoFU3oA2gWR0CFVuQfZElWdX2UKGgGaAloD0MIHjf8brqcVkCUhpRSlGgVTegDaBZHQIVZy19fCyh1fZQoaAZoCWgPQwhFnbmHhAVAQJSGlFKUaBVN6ANoFkdAhV2bmdRR/HV9lChoBmgJaA9DCDkn9tA+ZVhAlIaUUpRoFU3oA2gWR0CFZMXC0ngHdX2UKGgGaAloD0MI7nw/NV7aVkCUhpRSlGgVTegDaBZHQIVnmchC+lF1fZQoaAZoCWgPQwhzZrtCH8w8wJSGlFKUaBVNsQFoFkdAhWtVI7Njb3V9lChoBmgJaA9DCDvgumJGXVdAlIaUUpRoFU3oA2gWR0CFc3lOoHcDdX2UKGgGaAloD0MI5ZoCmZ24VECUhpRSlGgVTegDaBZHQIVz4O8TSLJ1fZQoaAZoCWgPQwgkJxO3CqtVQJSGlFKUaBVN6ANoFkdAhX3PHtF8X3V9lChoBmgJaA9DCL8qFyr/QiXAlIaUUpRoFU3oA2gWR0CFmON+9alldX2UKGgGaAloD0MIP8bctYSEPsCUhpRSlGgVTb8BaBZHQIWcU/dIoVp1fZQoaAZoCWgPQwhRacTMPu1JQJSGlFKUaBVN6ANoFkdAhZ4JqREF4nV9lChoBmgJaA9DCHb51of1olpAlIaUUpRoFU3oA2gWR0CFvbd0JWvKdX2UKGgGaAloD0MIe/oI/OGOX0CUhpRSlGgVTegDaBZHQIXChFI/Z/V1fZQoaAZoCWgPQwjf4uE9BzBgQJSGlFKUaBVN6ANoFkdAhcnKcurZJ3V9lChoBmgJaA9DCEBLV7CNIVhAlIaUUpRoFU3oA2gWR0CF0vAymALBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 110, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efce7713ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efce7713d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efce7713dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efce7713e50>", "_build": "<function ActorCriticPolicy._build at 0x7efce7713ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7efce7713f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efce7698040>", "_predict": "<function ActorCriticPolicy._predict at 0x7efce76980d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efce7698160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efce76981f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efce7698280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efce7712480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 4063232, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671720204998477542, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1K+D1Osbg/Rpy7PsbHz74eX7g+HG6SPQAAAAAAAAAAmmbrvdWznD4y54o+qwflvg3INT1WjSQ+AAAAAAAAAAAADGc9HLdmPYVjXr7H8Kq+/JcTvjMuPz0AAAAAAAAAADPZ371SKKo+Y8X0Pmew9r6rMWi+f0KsPgAAAAAAAAAAALEVvY9ybbrYJOS0UdfVr4G4HbvDoD00AACAPwAAgD/TUym+wceKP49owb4FTQi/zP6rvi7zS74AAAAAAAAAAGbMRj00SYQ/jZj2PaOcAb9s9AE9x0vGPAAAAAAAAAAAzenZPKRsX7uA2/C6/USsO1+9obzr5p48AACAPwAAgD8ALI+7T6RavMKHFb1BddM8FcC4Pea/qb0AAIA/AACAPwD44ryKsGM+XglKPsQ9tr6HF5c9M5bHPQAAAAAAAAAAWli7vTMlpz69RtM+jgTwvhmNAT5wioc+AAAAAAAAAAAzs465Cq9Guw+Pubus3LY8C6V0PJmqm70AAIA/AACAP5pVV709WSW7BUkhPGIFlTzmPHu8wkWAPQAAgD8AAIA/zR2yvBRWtTk8EDo8sX2PvlPfrT2qfOq+AAAAAAAAgD/N0Ts9nY04PnI947vkcbG+fjyVPWhPTb0AAAAAAAAAADPuZD1DGTm89Z/Ivb9IZzxE2Z49djdAvQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5936768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbryWV6YckCUhpRSlIwBbJRL64wBdJRHQKu3cbLlmvp1fZQoaAZoCWgPQwj8Gd6sAbVzQJSGlFKUaBVLsWgWR0Crt5LFOwgUdX2UKGgGaAloD0MIya1Jt+XQckCUhpRSlGgVS9doFkdAq7ej7qIJq3V9lChoBmgJaA9DCLK8qx4w6HFAlIaUUpRoFUv0aBZHQKu3y6I3zc11fZQoaAZoCWgPQwgkgJvFixVNQJSGlFKUaBVLnmgWR0CruDbg0j1PdX2UKGgGaAloD0MIezL/6NsOckCUhpRSlGgVS9RoFkdAq7hlHjIaLnV9lChoBmgJaA9DCIbI6es5U3NAlIaUUpRoFUvMaBZHQKu4irjHXEt1fZQoaAZoCWgPQwhXl1MC4hNyQJSGlFKUaBVLzGgWR0CruJQiaAnVdX2UKGgGaAloD0MIdCfYf92fc0CUhpRSlGgVS+toFkdAq7i2s/6frnV9lChoBmgJaA9DCBAGnnvPaXFAlIaUUpRoFUvTaBZHQKu44sHSncd1fZQoaAZoCWgPQwiTOZZ3lVdwQJSGlFKUaBVL22gWR0CruQh8x9G7dX2UKGgGaAloD0MIh6WBH1WuckCUhpRSlGgVS9VoFkdAq7klrylN13V9lChoBmgJaA9DCPay7bQ1qnBAlIaUUpRoFUvRaBZHQKu5PLpRoAZ1fZQoaAZoCWgPQwg+JlKajfVwQJSGlFKUaBVL2GgWR0CruUjK5kLAdX2UKGgGaAloD0MIHauUnimGcECUhpRSlGgVS9poFkdAq7lkliSaE3V9lChoBmgJaA9DCNWSjnIw0HBAlIaUUpRoFUvAaBZHQKu5fBJqZc91fZQoaAZoCWgPQwh8fhghfO9xQJSGlFKUaBVL7WgWR0CrucPfTCtSdX2UKGgGaAloD0MItwiM9Y0ycECUhpRSlGgVS85oFkdAq7nOcFyJbnV9lChoBmgJaA9DCCJTPgQVhXBAlIaUUpRoFUvXaBZHQKu6ER7JGON1fZQoaAZoCWgPQwiOW8zPTcFxQJSGlFKUaBVL7mgWR0CruhTt9hJAdX2UKGgGaAloD0MIBOW2fU+7ckCUhpRSlGgVS9FoFkdAq7ruuRs/IXV9lChoBmgJaA9DCDAQBMhQ629AlIaUUpRoFUvtaBZHQKu67qFAVwh1fZQoaAZoCWgPQwhxOPOr+aZyQJSGlFKUaBVL52gWR0CruwoYNy5qdX2UKGgGaAloD0MIvYqMDkijc0CUhpRSlGgVS7xoFkdAq7sr6guh9XV9lChoBmgJaA9DCF6c+GpHaXNAlIaUUpRoFUvaaBZHQKu7PCtRvWJ1fZQoaAZoCWgPQwgWbvlIil9xQJSGlFKUaBVNBQFoFkdAq7tZoAXEZXV9lChoBmgJaA9DCKQ5svLLlnFAlIaUUpRoFUvNaBZHQKu7g0Sh8IB1fZQoaAZoCWgPQwjThsPSgEBxQJSGlFKUaBVL7mgWR0Cru6a7NB4VdX2UKGgGaAloD0MI63Qg6ymhcUCUhpRSlGgVS8xoFkdAq7vAo5PuX3V9lChoBmgJaA9DCDxLkBHQ33FAlIaUUpRoFUvbaBZHQKvFRR+jM3Z1fZQoaAZoCWgPQwgXt9EAHmxzQJSGlFKUaBVL7mgWR0CrxVDTSb6QdX2UKGgGaAloD0MIwyy0cxowckCUhpRSlGgVS+ZoFkdAq8XBfBvaUXV9lChoBmgJaA9DCFt7n6rCJnFAlIaUUpRoFUvraBZHQKvF23gDRtx1fZQoaAZoCWgPQwiUg9kEGKxzQJSGlFKUaBVL1WgWR0CrxeYcWCVbdX2UKGgGaAloD0MI/aNv0jR8cUCUhpRSlGgVS+FoFkdAq8YDgQ6IWXV9lChoBmgJaA9DCLgFS3UBnnNAlIaUUpRoFUvMaBZHQKvGpjBEa2p1fZQoaAZoCWgPQwg9R+S71GJzQJSGlFKUaBVLz2gWR0CrxvEpI+W4dX2UKGgGaAloD0MIliU6y+ygckCUhpRSlGgVS8xoFkdAq8b5pBX0XnV9lChoBmgJaA9DCO/i/bh94HBAlIaUUpRoFUvuaBZHQKvHEU7jkuJ1fZQoaAZoCWgPQwg0D2CRH1tzQJSGlFKUaBVL52gWR0CrxxeHzpX7dX2UKGgGaAloD0MI4/p3fWbvcUCUhpRSlGgVS8FoFkdAq8dRSgoPTXV9lChoBmgJaA9DCBv2e2KdwXJAlIaUUpRoFUvXaBZHQKvHXUMG5c11fZQoaAZoCWgPQwiIvVDAtrFyQJSGlFKUaBVLz2gWR0Crx2GSZBszdX2UKGgGaAloD0MIObcJ94rlcUCUhpRSlGgVS/BoFkdAq8d6raM72nV9lChoBmgJaA9DCLX66qpAHXFAlIaUUpRoFUvNaBZHQKvHhFz+3ph1fZQoaAZoCWgPQwhevYqMzhpwQJSGlFKUaBVL3GgWR0Crx7rCm/FjdX2UKGgGaAloD0MITFKZYg4bdECUhpRSlGgVS7RoFkdAq8fnSYw7DHV9lChoBmgJaA9DCPse9ddr9nFAlIaUUpRoFUvWaBZHQKvIITV2A5J1fZQoaAZoCWgPQwgxem6hq3tuQJSGlFKUaBVL1WgWR0CryDnNPgvUdX2UKGgGaAloD0MIkwA1tWxtckCUhpRSlGgVS/ZoFkdAq8jAXj2i+XV9lChoBmgJaA9DCKAy/n2GkXJAlIaUUpRoFUvHaBZHQKvI6AvtdAx1fZQoaAZoCWgPQwhgAUwZeNtyQJSGlFKUaBVLwGgWR0CryTsqBmPHdX2UKGgGaAloD0MInrMFhBZVcUCUhpRSlGgVS9hoFkdAq8lkcuJ1q3V9lChoBmgJaA9DCE1Iaww6tHBAlIaUUpRoFUvZaBZHQKvJkPf8/EB1fZQoaAZoCWgPQwhKtrqc0kRxQJSGlFKUaBVL62gWR0Crya8IRh+fdX2UKGgGaAloD0MIeO49XDJ/cECUhpRSlGgVS91oFkdAq8nnO6d1+3V9lChoBmgJaA9DCHr+tFEdBnJAlIaUUpRoFUvgaBZHQKvKCCsfaHt1fZQoaAZoCWgPQwh00ZDxqBZzQJSGlFKUaBVL5mgWR0CryhaakRBedX2UKGgGaAloD0MI3VuRmOBkckCUhpRSlGgVS95oFkdAq8opsCT2WnV9lChoBmgJaA9DCG2Oc5vwh3FAlIaUUpRoFUvkaBZHQKvKMZVn27F1fZQoaAZoCWgPQwiQEyaMZsRyQJSGlFKUaBVLx2gWR0CrylHVwxWUdX2UKGgGaAloD0MIcY46Om5EcUCUhpRSlGgVS7VoFkdAq8penl4keXV9lChoBmgJaA9DCHNlUG1w6HBAlIaUUpRoFUvlaBZHQKvKfFNtZV51fZQoaAZoCWgPQwiWdmoud1FyQJSGlFKUaBVL5mgWR0Cryvt+kP+XdX2UKGgGaAloD0MIS65i8ZskcUCUhpRSlGgVS8ZoFkdAq8tQWYWtVHV9lChoBmgJaA9DCNPYXgt6N3FAlIaUUpRoFUvkaBZHQKvLh1ZkkKN1fZQoaAZoCWgPQwiJB5RNOURxQJSGlFKUaBVLyGgWR0Cry6gS39aVdX2UKGgGaAloD0MIVYhH4uUxc0CUhpRSlGgVS9BoFkdAq8wV3MY/FHV9lChoBmgJaA9DCJLn+j4cT3JAlIaUUpRoFUvKaBZHQKvMG9XcQAd1fZQoaAZoCWgPQwiHa7WH/SZxQJSGlFKUaBVL52gWR0CrzDLPUrkKdX2UKGgGaAloD0MItyVywZnPb0CUhpRSlGgVS7poFkdAq8xHllsguHV9lChoBmgJaA9DCPrRcMpcZ3BAlIaUUpRoFUu6aBZHQKvMYaOxSpB1fZQoaAZoCWgPQwhvLZPhOK5wQJSGlFKUaBVL0GgWR0CrzHsk6cRUdX2UKGgGaAloD0MIlEvjF16QcECUhpRSlGgVS7toFkdAq8yrhUBGQXV9lChoBmgJaA9DCCRCI9h4GHJAlIaUUpRoFUvOaBZHQKvMw4axX4l1fZQoaAZoCWgPQwhvtyQHLIVyQJSGlFKUaBVL3GgWR0CrzOTM7lq8dX2UKGgGaAloD0MIUmNCzKWUYkCUhpRSlGgVTegDaBZHQKvNCPH1e0J1fZQoaAZoCWgPQwi2gxH7xO1yQJSGlFKUaBVNCwFoFkdAq80P779AHHV9lChoBmgJaA9DCAGIu3rVunJAlIaUUpRoFU0GAWgWR0CrzTGYSg5BdX2UKGgGaAloD0MI/RadLLXmckCUhpRSlGgVS85oFkdAq81Y0GeMAHV9lChoBmgJaA9DCCUC1T+Ii3FAlIaUUpRoFUu7aBZHQKvNbQxesxR1fZQoaAZoCWgPQwha8KKvoG9wQJSGlFKUaBVLzmgWR0CrzfSkbgjydX2UKGgGaAloD0MIvD0IAXlDcUCUhpRSlGgVS+JoFkdAq85H4oJAuHV9lChoBmgJaA9DCB2wq8kT8HFAlIaUUpRoFUu4aBZHQKvOTppvgm91fZQoaAZoCWgPQwi7fyxEx6twQJSGlFKUaBVL2mgWR0Crzpdn9NvgdX2UKGgGaAloD0MILhud89N0ckCUhpRSlGgVS9JoFkdAq87K/h2nsXV9lChoBmgJaA9DCAlx5ezdMnJAlIaUUpRoFUvqaBZHQKvO/JU5uIh1fZQoaAZoCWgPQwgVcxB0dBJxQJSGlFKUaBVL3WgWR0CrzwtQbdaddX2UKGgGaAloD0MIyEEJMy1BckCUhpRSlGgVTQEBaBZHQKvPF+3H7xd1fZQoaAZoCWgPQwhmFqHYyhVwQJSGlFKUaBVLzWgWR0CrzyNapxWDdX2UKGgGaAloD0MIayqLwi6bcUCUhpRSlGgVS9FoFkdAq89NJjDsMXV9lChoBmgJaA9DCGmM1lEVG3FAlIaUUpRoFUu9aBZHQKvPZqsU7CB1fZQoaAZoCWgPQwhNLzGWaSByQJSGlFKUaBVL82gWR0Crz3Wdd3SsdX2UKGgGaAloD0MIDLCPTl2PcUCUhpRSlGgVS9RoFkdAq89+XZ5AyHV9lChoBmgJaA9DCPfpeMxAfXNAlIaUUpRoFUvBaBZHQKvPm4MnZ011fZQoaAZoCWgPQwh0XfjBeR1yQJSGlFKUaBVLz2gWR0Crz9aKtPpIdX2UKGgGaAloD0MIaAdcVwypckCUhpRSlGgVTQkBaBZHQKvP/njABT51fZQoaAZoCWgPQwhJDtjVpCdwQJSGlFKUaBVLymgWR0Cr0H8Co0hvdX2UKGgGaAloD0MI8Bge+5kDcUCUhpRSlGgVS+xoFkdAq9CCesgdO3V9lChoBmgJaA9DCN14d2RsznBAlIaUUpRoFUvSaBZHQKvQj5ftx+91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1040, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 290.5640821628891, "std_reward": 22.68242170704139, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T15:51:43.359610"}
|
rl_agent_1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9b6a8344d30e79902dc4b7afbea34679ccb2962af8ea7d412481c67ea56ac7d
|
3 |
+
size 147212
|
rl_agent_1/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining":
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efce7713ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efce7713d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efce7713dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efce7713e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efce7713ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efce7713f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efce7698040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efce76980d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efce7698160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efce76981f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efce7698280>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efce7712480>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 4063232,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671720204998477542,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1K+D1Osbg/Rpy7PsbHz74eX7g+HG6SPQAAAAAAAAAAmmbrvdWznD4y54o+qwflvg3INT1WjSQ+AAAAAAAAAAAADGc9HLdmPYVjXr7H8Kq+/JcTvjMuPz0AAAAAAAAAADPZ371SKKo+Y8X0Pmew9r6rMWi+f0KsPgAAAAAAAAAAALEVvY9ybbrYJOS0UdfVr4G4HbvDoD00AACAPwAAgD/TUym+wceKP49owb4FTQi/zP6rvi7zS74AAAAAAAAAAGbMRj00SYQ/jZj2PaOcAb9s9AE9x0vGPAAAAAAAAAAAzenZPKRsX7uA2/C6/USsO1+9obzr5p48AACAPwAAgD8ALI+7T6RavMKHFb1BddM8FcC4Pea/qb0AAIA/AACAPwD44ryKsGM+XglKPsQ9tr6HF5c9M5bHPQAAAAAAAAAAWli7vTMlpz69RtM+jgTwvhmNAT5wioc+AAAAAAAAAAAzs465Cq9Guw+Pubus3LY8C6V0PJmqm70AAIA/AACAP5pVV709WSW7BUkhPGIFlTzmPHu8wkWAPQAAgD8AAIA/zR2yvBRWtTk8EDo8sX2PvlPfrT2qfOq+AAAAAAAAgD/N0Ts9nY04PnI947vkcbG+fjyVPWhPTb0AAAAAAAAAADPuZD1DGTm89Z/Ivb9IZzxE2Z49djdAvQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.5936768,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbryWV6YckCUhpRSlIwBbJRL64wBdJRHQKu3cbLlmvp1fZQoaAZoCWgPQwj8Gd6sAbVzQJSGlFKUaBVLsWgWR0Crt5LFOwgUdX2UKGgGaAloD0MIya1Jt+XQckCUhpRSlGgVS9doFkdAq7ej7qIJq3V9lChoBmgJaA9DCLK8qx4w6HFAlIaUUpRoFUv0aBZHQKu3y6I3zc11fZQoaAZoCWgPQwgkgJvFixVNQJSGlFKUaBVLnmgWR0CruDbg0j1PdX2UKGgGaAloD0MIezL/6NsOckCUhpRSlGgVS9RoFkdAq7hlHjIaLnV9lChoBmgJaA9DCIbI6es5U3NAlIaUUpRoFUvMaBZHQKu4irjHXEt1fZQoaAZoCWgPQwhXl1MC4hNyQJSGlFKUaBVLzGgWR0CruJQiaAnVdX2UKGgGaAloD0MIdCfYf92fc0CUhpRSlGgVS+toFkdAq7i2s/6frnV9lChoBmgJaA9DCBAGnnvPaXFAlIaUUpRoFUvTaBZHQKu44sHSncd1fZQoaAZoCWgPQwiTOZZ3lVdwQJSGlFKUaBVL22gWR0CruQh8x9G7dX2UKGgGaAloD0MIh6WBH1WuckCUhpRSlGgVS9VoFkdAq7klrylN13V9lChoBmgJaA9DCPay7bQ1qnBAlIaUUpRoFUvRaBZHQKu5PLpRoAZ1fZQoaAZoCWgPQwg+JlKajfVwQJSGlFKUaBVL2GgWR0CruUjK5kLAdX2UKGgGaAloD0MIHauUnimGcECUhpRSlGgVS9poFkdAq7lkliSaE3V9lChoBmgJaA9DCNWSjnIw0HBAlIaUUpRoFUvAaBZHQKu5fBJqZc91fZQoaAZoCWgPQwh8fhghfO9xQJSGlFKUaBVL7WgWR0CrucPfTCtSdX2UKGgGaAloD0MItwiM9Y0ycECUhpRSlGgVS85oFkdAq7nOcFyJbnV9lChoBmgJaA9DCCJTPgQVhXBAlIaUUpRoFUvXaBZHQKu6ER7JGON1fZQoaAZoCWgPQwiOW8zPTcFxQJSGlFKUaBVL7mgWR0CruhTt9hJAdX2UKGgGaAloD0MIBOW2fU+7ckCUhpRSlGgVS9FoFkdAq7ruuRs/IXV9lChoBmgJaA9DCDAQBMhQ629AlIaUUpRoFUvtaBZHQKu67qFAVwh1fZQoaAZoCWgPQwhxOPOr+aZyQJSGlFKUaBVL52gWR0CruwoYNy5qdX2UKGgGaAloD0MIvYqMDkijc0CUhpRSlGgVS7xoFkdAq7sr6guh9XV9lChoBmgJaA9DCF6c+GpHaXNAlIaUUpRoFUvaaBZHQKu7PCtRvWJ1fZQoaAZoCWgPQwgWbvlIil9xQJSGlFKUaBVNBQFoFkdAq7tZoAXEZXV9lChoBmgJaA9DCKQ5svLLlnFAlIaUUpRoFUvNaBZHQKu7g0Sh8IB1fZQoaAZoCWgPQwjThsPSgEBxQJSGlFKUaBVL7mgWR0Cru6a7NB4VdX2UKGgGaAloD0MI63Qg6ymhcUCUhpRSlGgVS8xoFkdAq7vAo5PuX3V9lChoBmgJaA9DCDxLkBHQ33FAlIaUUpRoFUvbaBZHQKvFRR+jM3Z1fZQoaAZoCWgPQwgXt9EAHmxzQJSGlFKUaBVL7mgWR0CrxVDTSb6QdX2UKGgGaAloD0MIwyy0cxowckCUhpRSlGgVS+ZoFkdAq8XBfBvaUXV9lChoBmgJaA9DCFt7n6rCJnFAlIaUUpRoFUvraBZHQKvF23gDRtx1fZQoaAZoCWgPQwiUg9kEGKxzQJSGlFKUaBVL1WgWR0CrxeYcWCVbdX2UKGgGaAloD0MI/aNv0jR8cUCUhpRSlGgVS+FoFkdAq8YDgQ6IWXV9lChoBmgJaA9DCLgFS3UBnnNAlIaUUpRoFUvMaBZHQKvGpjBEa2p1fZQoaAZoCWgPQwg9R+S71GJzQJSGlFKUaBVLz2gWR0CrxvEpI+W4dX2UKGgGaAloD0MIliU6y+ygckCUhpRSlGgVS8xoFkdAq8b5pBX0XnV9lChoBmgJaA9DCO/i/bh94HBAlIaUUpRoFUvuaBZHQKvHEU7jkuJ1fZQoaAZoCWgPQwg0D2CRH1tzQJSGlFKUaBVL52gWR0CrxxeHzpX7dX2UKGgGaAloD0MI4/p3fWbvcUCUhpRSlGgVS8FoFkdAq8dRSgoPTXV9lChoBmgJaA9DCBv2e2KdwXJAlIaUUpRoFUvXaBZHQKvHXUMG5c11fZQoaAZoCWgPQwiIvVDAtrFyQJSGlFKUaBVLz2gWR0Crx2GSZBszdX2UKGgGaAloD0MIObcJ94rlcUCUhpRSlGgVS/BoFkdAq8d6raM72nV9lChoBmgJaA9DCLX66qpAHXFAlIaUUpRoFUvNaBZHQKvHhFz+3ph1fZQoaAZoCWgPQwhevYqMzhpwQJSGlFKUaBVL3GgWR0Crx7rCm/FjdX2UKGgGaAloD0MITFKZYg4bdECUhpRSlGgVS7RoFkdAq8fnSYw7DHV9lChoBmgJaA9DCPse9ddr9nFAlIaUUpRoFUvWaBZHQKvIITV2A5J1fZQoaAZoCWgPQwgxem6hq3tuQJSGlFKUaBVL1WgWR0CryDnNPgvUdX2UKGgGaAloD0MIkwA1tWxtckCUhpRSlGgVS/ZoFkdAq8jAXj2i+XV9lChoBmgJaA9DCKAy/n2GkXJAlIaUUpRoFUvHaBZHQKvI6AvtdAx1fZQoaAZoCWgPQwhgAUwZeNtyQJSGlFKUaBVLwGgWR0CryTsqBmPHdX2UKGgGaAloD0MInrMFhBZVcUCUhpRSlGgVS9hoFkdAq8lkcuJ1q3V9lChoBmgJaA9DCE1Iaww6tHBAlIaUUpRoFUvZaBZHQKvJkPf8/EB1fZQoaAZoCWgPQwhKtrqc0kRxQJSGlFKUaBVL62gWR0Crya8IRh+fdX2UKGgGaAloD0MIeO49XDJ/cECUhpRSlGgVS91oFkdAq8nnO6d1+3V9lChoBmgJaA9DCHr+tFEdBnJAlIaUUpRoFUvgaBZHQKvKCCsfaHt1fZQoaAZoCWgPQwh00ZDxqBZzQJSGlFKUaBVL5mgWR0CryhaakRBedX2UKGgGaAloD0MI3VuRmOBkckCUhpRSlGgVS95oFkdAq8opsCT2WnV9lChoBmgJaA9DCG2Oc5vwh3FAlIaUUpRoFUvkaBZHQKvKMZVn27F1fZQoaAZoCWgPQwiQEyaMZsRyQJSGlFKUaBVLx2gWR0CrylHVwxWUdX2UKGgGaAloD0MIcY46Om5EcUCUhpRSlGgVS7VoFkdAq8penl4keXV9lChoBmgJaA9DCHNlUG1w6HBAlIaUUpRoFUvlaBZHQKvKfFNtZV51fZQoaAZoCWgPQwiWdmoud1FyQJSGlFKUaBVL5mgWR0Cryvt+kP+XdX2UKGgGaAloD0MIS65i8ZskcUCUhpRSlGgVS8ZoFkdAq8tQWYWtVHV9lChoBmgJaA9DCNPYXgt6N3FAlIaUUpRoFUvkaBZHQKvLh1ZkkKN1fZQoaAZoCWgPQwiJB5RNOURxQJSGlFKUaBVLyGgWR0Cry6gS39aVdX2UKGgGaAloD0MIVYhH4uUxc0CUhpRSlGgVS9BoFkdAq8wV3MY/FHV9lChoBmgJaA9DCJLn+j4cT3JAlIaUUpRoFUvKaBZHQKvMG9XcQAd1fZQoaAZoCWgPQwiHa7WH/SZxQJSGlFKUaBVL52gWR0CrzDLPUrkKdX2UKGgGaAloD0MItyVywZnPb0CUhpRSlGgVS7poFkdAq8xHllsguHV9lChoBmgJaA9DCPrRcMpcZ3BAlIaUUpRoFUu6aBZHQKvMYaOxSpB1fZQoaAZoCWgPQwhvLZPhOK5wQJSGlFKUaBVL0GgWR0CrzHsk6cRUdX2UKGgGaAloD0MIlEvjF16QcECUhpRSlGgVS7toFkdAq8yrhUBGQXV9lChoBmgJaA9DCCRCI9h4GHJAlIaUUpRoFUvOaBZHQKvMw4axX4l1fZQoaAZoCWgPQwhvtyQHLIVyQJSGlFKUaBVL3GgWR0CrzOTM7lq8dX2UKGgGaAloD0MIUmNCzKWUYkCUhpRSlGgVTegDaBZHQKvNCPH1e0J1fZQoaAZoCWgPQwi2gxH7xO1yQJSGlFKUaBVNCwFoFkdAq80P779AHHV9lChoBmgJaA9DCAGIu3rVunJAlIaUUpRoFU0GAWgWR0CrzTGYSg5BdX2UKGgGaAloD0MI/RadLLXmckCUhpRSlGgVS85oFkdAq81Y0GeMAHV9lChoBmgJaA9DCCUC1T+Ii3FAlIaUUpRoFUu7aBZHQKvNbQxesxR1fZQoaAZoCWgPQwha8KKvoG9wQJSGlFKUaBVLzmgWR0CrzfSkbgjydX2UKGgGaAloD0MIvD0IAXlDcUCUhpRSlGgVS+JoFkdAq85H4oJAuHV9lChoBmgJaA9DCB2wq8kT8HFAlIaUUpRoFUu4aBZHQKvOTppvgm91fZQoaAZoCWgPQwi7fyxEx6twQJSGlFKUaBVL2mgWR0Crzpdn9NvgdX2UKGgGaAloD0MILhud89N0ckCUhpRSlGgVS9JoFkdAq87K/h2nsXV9lChoBmgJaA9DCAlx5ezdMnJAlIaUUpRoFUvqaBZHQKvO/JU5uIh1fZQoaAZoCWgPQwgVcxB0dBJxQJSGlFKUaBVL3WgWR0CrzwtQbdaddX2UKGgGaAloD0MIyEEJMy1BckCUhpRSlGgVTQEBaBZHQKvPF+3H7xd1fZQoaAZoCWgPQwhmFqHYyhVwQJSGlFKUaBVLzWgWR0CrzyNapxWDdX2UKGgGaAloD0MIayqLwi6bcUCUhpRSlGgVS9FoFkdAq89NJjDsMXV9lChoBmgJaA9DCGmM1lEVG3FAlIaUUpRoFUu9aBZHQKvPZqsU7CB1fZQoaAZoCWgPQwhNLzGWaSByQJSGlFKUaBVL82gWR0Crz3Wdd3SsdX2UKGgGaAloD0MIDLCPTl2PcUCUhpRSlGgVS9RoFkdAq89+XZ5AyHV9lChoBmgJaA9DCPfpeMxAfXNAlIaUUpRoFUvBaBZHQKvPm4MnZ011fZQoaAZoCWgPQwh0XfjBeR1yQJSGlFKUaBVLz2gWR0Crz9aKtPpIdX2UKGgGaAloD0MIaAdcVwypckCUhpRSlGgVTQkBaBZHQKvP/njABT51fZQoaAZoCWgPQwhJDtjVpCdwQJSGlFKUaBVLymgWR0Cr0H8Co0hvdX2UKGgGaAloD0MI8Bge+5kDcUCUhpRSlGgVS+xoFkdAq9CCesgdO3V9lChoBmgJaA9DCN14d2RsznBAlIaUUpRoFUvSaBZHQKvQj5ftx+91ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 1040,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
rl_agent_1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39527735e01c47b3db5743e102829548692b16906dbb2e1066abf55925ac1729
|
3 |
+
size 88057
|
rl_agent_1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9be42fcb89e2e5dc4b4c0749fa9b01461285423d17875d72d5f0a9dfdfe88535
|
3 |
size 43201
|