moctarsmal commited on
Commit
3ea237f
·
1 Parent(s): 06759de

Model save

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: flaubert/flaubert_small_cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: bank-transactions-statements-classification
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bank-transactions-statements-classification
17
+
18
+ This model is a fine-tuned version of [flaubert/flaubert_small_cased](https://huggingface.co/flaubert/flaubert_small_cased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6723
21
+ - Accuracy: 0.8336
22
+ - F1 Macro: 0.8170
23
+ - F1 Weighted: 0.8313
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 10
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|
54
+ | No log | 1.0 | 172 | 3.1714 | 0.2004 | 0.0629 | 0.1727 |
55
+ | No log | 2.0 | 344 | 2.5067 | 0.3875 | 0.2393 | 0.3428 |
56
+ | 3.328 | 3.0 | 516 | 1.8384 | 0.5632 | 0.4761 | 0.5379 |
57
+ | 3.328 | 4.0 | 688 | 1.5105 | 0.6298 | 0.6035 | 0.6124 |
58
+ | 3.328 | 5.0 | 860 | 1.2893 | 0.6811 | 0.6673 | 0.6669 |
59
+ | 1.8671 | 6.0 | 1032 | 1.2444 | 0.6917 | 0.6996 | 0.6847 |
60
+ | 1.8671 | 7.0 | 1204 | 1.1941 | 0.7104 | 0.7196 | 0.6999 |
61
+ | 1.8671 | 8.0 | 1376 | 1.1427 | 0.7324 | 0.7397 | 0.7255 |
62
+ | 1.3422 | 9.0 | 1548 | 1.0971 | 0.7443 | 0.7567 | 0.7387 |
63
+ | 1.3422 | 10.0 | 1720 | 1.1076 | 0.7450 | 0.7577 | 0.7390 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.34.0
69
+ - Pytorch 2.0.1+cu118
70
+ - Datasets 2.14.5
71
+ - Tokenizers 0.14.1