readme: add initial version
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceFW/fineweb
|
5 |
+
- HuggingFaceFW/fineweb-edu
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
tags:
|
9 |
+
- fineweb-lms
|
10 |
+
- bert
|
11 |
+
- token-dropping
|
12 |
+
---
|
13 |
+
# FineWeb-LMs: Token Dropping BERT
|
14 |
+
|
15 |
+
<p align="left">
|
16 |
+
<picture>
|
17 |
+
<img alt="BERT with TensorFlow Model Garden" src="https://github.com/stefan-it/model-garden-lms/raw/main/bert_tf_model_garden.png" style="max-width: 25%;">
|
18 |
+
</picture>
|
19 |
+
<br/>
|
20 |
+
</p>
|
21 |
+
|
22 |
+
This repository presents a Token Dropping BERT model that was pretrained on the 10BT subsets of [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
|
23 |
+
|
24 |
+
# Pretraining Details
|
25 |
+
|
26 |
+
The released BERT model is part of my [TensorFlow Model Garden LMs](https://github.com/stefan-it/model-garden-lms/tree/main) project.
|
27 |
+
|
28 |
+
The pretraining was done on a v3-32 TPU VM Pod, provided by the amazing [TRC program](https://sites.research.google/trc/about/). Detailed cheatsheets are available:
|
29 |
+
|
30 |
+
* [TPU VM Setup](https://github.com/stefan-it/model-garden-lms/tree/main/cheatsheet)
|
31 |
+
* [Pretraining a Token Dropping BERT Model with TensorFlow Model Garden Library](https://github.com/stefan-it/model-garden-lms/blob/main/token-dropping-bert)
|
32 |
+
|
33 |
+
tl;dr: The model was pretrained for 1M steps with a global batch size of 512, a sequence length of 512 using a vocab size of 64k.
|
34 |
+
|
35 |
+
# Checkpoint Evaluation with ScandEval
|
36 |
+
|
37 |
+
We evaluate the last 5 checkpoints (1M, 951k, 901k, 851k and 851k) with a recent version of ScandEval to check their performance and also compare it with popular encoder-only models such as BERT, RoBERTa or ELECTRA:
|
38 |
+
|
39 |
+
| Model ID | Avg. Score | CoNLL-En | SST5 | ScaLA-En | SQuAD |
|
40 |
+
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|
41 |
+
| [model-garden-lms/bert-base-token-dropping-finewebs-1m](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-1m) | 67.66 | 88.68 ± 0.76 / 88.47 ± 0.62 | 57.4 ± 1.7 / 59.61 ± 1.6 | 52.72 ± 5.13 / 73.6 ± 4.42 | 55.04 ± 1.54 / 65.72 ± 1.75 |
|
42 |
+
| [model-garden-lms/bert-base-token-dropping-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-951k) | 66.87 | 88.81 ± 0.68 / 88.64 ± 0.54 | 57.44 ± 1.39 / 56.85 ± 2.09 | 50.91 ± 5.08 / 72.22 ± 4.2 | 54.63 ± 1.3 / 65.43 ± 1.43 |
|
43 |
+
| [model-garden-lms/bert-base-token-dropping-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k) | **68.01** | 88.98 ± 0.64 / 88.67 ± 0.55 | 57.79 ± 1.31 / 58.91 ± 1.85 | 54.25 ± 6.3 / 75.73 ± 3.54 | 54.4 ± 0.72 / 65.31 ± 1.01 |
|
44 |
+
| [model-garden-lms/bert-base-token-dropping-finewebs-851k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-851k) | 67.97 | 88.9 ± 0.7 / 88.81 ± 0.54 | 58.0 ± 1.02 / 58.73 ± 1.8 | 54.04 ± 2.61 / 74.89 ± 2.07 | 54.75 ± 1.08 / 65.66 ± 1.26 |
|
45 |
+
| [model-garden-lms/bert-base-token-dropping-finewebs-801k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-801k) | 67.80 | 88.95 ± 0.7 / 88.73 ± 0.58 | 57.71 ± 1.43 / 60.5 ± 1.69 | 50.95 ± 6.3 / 74.16 ± 3.2 | 55.24 ± 1.37 / 66.13 ± 1.24 |
|
46 |
+
| [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) | 62.26 | 87.39 ± 0.79 / 87.11 ± 0.66 | 54.49 ± 1.36 / 53.22 ± 1.15 | 52.08 ± 2.13 / 74.52 ± 1.31 | 38.63 ± 2.1 / 50.68 ± 1.87 |
|
47 |
+
| [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) | 69.26 | 87.82 ± 0.69 / 86.83 ± 0.62 | 62.3 ± 1.12 / 55.93 ± 0.67 | 62.61 ± 1.21 / 80.85 ± 0.59 | 52.51 ± 0.86 / 65.2 ± 0.85 |
|
48 |
+
| [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) | 68.96 | 90.35 ± 0.23 / 90.14 ± 0.2 | 60.95 ± 1.4 / 57.52 ± 1.97 | 50.64 ± 1.69 / 74.55 ± 0.9 | 57.82 ± 1.35 / 69.68 ± 1.02 |
|
49 |
+
|
50 |
+
Our pretrained BERT model shows a strong performance across all tasks. All detailed results can be found in [this](https://huggingface.co/datasets/model-garden-lms/finewebs-scandeval-results) dataset repository.
|
51 |
+
|
52 |
+
# ❤️ Acknowledgements
|
53 |
+
|
54 |
+
This repository is the outcome of the last two years of working with TPUs from the awesome [TRC program](https://sites.research.google/trc/about/) and the [TensorFlow Model Garden](https://github.com/tensorflow/models) library.
|
55 |
+
|
56 |
+
Made from Bavarian Oberland with ❤️ and 🥨.
|