update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: wav2vec2-model2-torgo
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# wav2vec2-model2-torgo
|
13 |
+
|
14 |
+
This model was trained from scratch on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 4.9975
|
17 |
+
- Wer: 1.0
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.1
|
37 |
+
- train_batch_size: 1
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 4
|
41 |
+
- total_train_batch_size: 4
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 1000
|
45 |
+
- num_epochs: 30
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---:|
|
51 |
+
| 12.5453 | 0.76 | 500 | 14.6490 | 1.0 |
|
52 |
+
| 4.8036 | 1.53 | 1000 | 8.4523 | 1.0 |
|
53 |
+
| 5.0421 | 2.29 | 1500 | 5.4114 | 1.0 |
|
54 |
+
| 5.2055 | 3.05 | 2000 | 11.0507 | 1.0 |
|
55 |
+
| 4.6389 | 3.82 | 2500 | 4.6792 | 1.0 |
|
56 |
+
| 4.5523 | 4.58 | 3000 | 4.7855 | 1.0 |
|
57 |
+
| 4.7843 | 5.34 | 3500 | 11.2783 | 1.0 |
|
58 |
+
| 4.6066 | 6.11 | 4000 | 8.7807 | 1.0 |
|
59 |
+
| 4.7382 | 6.87 | 4500 | 2942.0220 | 1.0 |
|
60 |
+
| 130.5733 | 7.63 | 5000 | 5.8412 | 1.0 |
|
61 |
+
| 4.4972 | 8.4 | 5500 | 17.7038 | 1.0 |
|
62 |
+
| 4.5196 | 9.16 | 6000 | 11.4548 | 1.0 |
|
63 |
+
| 4.3198 | 9.92 | 6500 | 6.0885 | 1.0 |
|
64 |
+
| 4.4273 | 10.69 | 7000 | 6.7374 | 1.0 |
|
65 |
+
| 4.2783 | 11.45 | 7500 | 4.7276 | 1.0 |
|
66 |
+
| 4.2985 | 12.21 | 8000 | 6.1412 | 1.0 |
|
67 |
+
| 4.3262 | 12.98 | 8500 | 5.2621 | 1.0 |
|
68 |
+
| 4.1705 | 13.74 | 9000 | 5.2214 | 1.0 |
|
69 |
+
| 4.3176 | 14.5 | 9500 | 5.5359 | 1.0 |
|
70 |
+
| 3.9808 | 15.27 | 10000 | 4.1537 | 1.0 |
|
71 |
+
| 4.0228 | 16.03 | 10500 | 4.2962 | 1.0 |
|
72 |
+
| 4.0595 | 16.79 | 11000 | 7.6361 | 1.0 |
|
73 |
+
| 4.0088 | 17.56 | 11500 | 6.8715 | 1.0 |
|
74 |
+
| 3.8727 | 18.32 | 12000 | 8.8657 | 1.0 |
|
75 |
+
| 4.0073 | 19.08 | 12500 | 5.8170 | 1.0 |
|
76 |
+
| 3.8511 | 19.85 | 13000 | 13.9836 | 1.0 |
|
77 |
+
| 4.0899 | 20.61 | 13500 | 5.3287 | 1.0 |
|
78 |
+
| 3.8782 | 21.37 | 14000 | 8.0635 | 1.0 |
|
79 |
+
| 3.9235 | 22.14 | 14500 | 5.5129 | 1.0 |
|
80 |
+
| 3.7276 | 22.9 | 15000 | 5.0819 | 1.0 |
|
81 |
+
| 3.7908 | 23.66 | 15500 | 6.1458 | 1.0 |
|
82 |
+
| 3.9176 | 24.43 | 16000 | 4.6094 | 1.0 |
|
83 |
+
| 3.8477 | 25.19 | 16500 | 5.1406 | 1.0 |
|
84 |
+
| 3.6917 | 25.95 | 17000 | 4.5684 | 1.0 |
|
85 |
+
| 3.8568 | 26.72 | 17500 | 4.0306 | 1.0 |
|
86 |
+
| 3.7231 | 27.48 | 18000 | 5.6331 | 1.0 |
|
87 |
+
| 3.8145 | 28.24 | 18500 | 8.2997 | 1.0 |
|
88 |
+
| 3.7809 | 29.01 | 19000 | 5.7468 | 1.0 |
|
89 |
+
| 3.5995 | 29.77 | 19500 | 4.9975 | 1.0 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.17.0
|
95 |
+
- Pytorch 1.11.0
|
96 |
+
- Datasets 1.18.3
|
97 |
+
- Tokenizers 0.11.6
|