File size: 5,938 Bytes
dbd666d a3a3b16 dbd666d 3f09a34 dbd666d a3a3b16 4f0c1c9 a3a3b16 2ce95d5 a3a3b16 2ce95d5 a3a3b16 2ce95d5 dbd666d 318101f a3a3b16 91014db dbd666d a3a3b16 dbd666d a3a3b16 8049033 dbd666d a3a3b16 8049033 dbd666d a3a3b16 dbd666d a3a3b16 dbd666d a3a3b16 dbd666d a3a3b16 dbd666d a3a3b16 5bac95a dbd666d a3a3b16 ad96500 dbd666d a3a3b16 ad96500 a3a3b16 dbd666d a3a3b16 dbd666d 6a6d4c8 a3a3b16 dbd666d a3a3b16 220fb29 4f0c1c9 220fb29 a3a3b16 5f3d565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
library_name: transformers
datasets:
- bigcode/the-stack-v2
- modularStarEncoder/SynthCode2Code2NL-neardedup
license: bigcode-openrail-m
base_model:
- modularStarEncoder/ModularStarEncoder
---
# ModularStarEncoder-800M Fine-Tuned model
<!-- Provide a quick summary of what the model is/does. -->
ModularStarEncoder-finetuned-27 is an encoder built on top of [ModularStarEncoder-1B Pre-trained](https://huggingface.co/andreagurioli1995/ModularStarEncoder) on [SynthCode2Code2NL](https://huggingface.co/datasets/andreagurioli1995/SynthCode2Code2NL-neardedup).
ModularStarEncoder fine-tuned-27 is an encoder for code-to-code and text-to-code retrieval tasks, enabling the end user to select the model size that meets their memory and computational constraints.
We built ModularStarEncoder on top of [StarCoder-2](https://huggingface.co/bigcode/starcoder2-15b), reducing its size from 15B to 1B parameters in bfloat16.
This version contains only the first 27 layers of ModularStarEncoder-finetuned, with the related projection head.
We have released this version to enhance the model's usability by allowing users to download only the desired size.
The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py)
ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details.
- **Paper:** [One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings](https://arxiv.org/abs/2503.03008)
- **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
- **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned)
### How to use
```python
from transformers import AutoModel
from transformers import AutoTokenizer
#import the model
model = AutoModel.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned-27", trust_remote_code=True)
#import the tokenizer, the tokenizer applies LEFT padding!
tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned-27")
language = "yourlanguagelowercased"
#instruction in case of code embedding in a code language
instruction_code = f"Represent this {language} code snippet for retrieval:"
#instruction in case of code embedding in English
instruction_natural_language = "Represent this code description for retrieving supporting snippets of code:"
code_snippet = "your code to embed here"
#You should follow this pattern to embed a snippet of code or natural language queries
sentence = f"{tokenizer.sep_token}{instruction_code}{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}"
#Tokenizing your sentence
tokenized_sentence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
#Embedding the tokenized sentence
embedded_sentence = model(**tokenized_sentence)
```
You will get as an output three elements:
- projected_pooled_normalized: Projected, pooled, and normalized embeddings from layer 27;
- raw_hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection
- attentions: attention scores from the encoder
### Training
<!-- Provide a longer summary of what this model is. -->
We fine-tuned ModularStarEncoder with a batch size of 2048 contrastive samples for 20,000 training steps.
The pre-training and fine-tuning were conducted on 512 NVIDIA Ampere (64GB) GPUs using the [Leonardo](https://arxiv.org/abs/2307.16885) supercomputer, requiring 450,000 GPU working hours.
| Hyperparameter | Value |
|--------------------------|-----------|
| Hidden size | 1024 |
| Max. position embeddings | 2048 |
| Num. of attention heads | 12 |
| Num. of key values heads | 4 |
| Num. of hidden layers | 36 |
| Attention | GQA |
| Num. of parameters | ≈1B |
|Loss function |CLIP loss |
|Multi-layer loss | yes |
### Evaluation
Here we briefly show our codeSearchNet (codeXGLUE) results between different layers; for full results over text-to-code and code-to-code refer to the article:
| Layer | Avg. MRR |
|--------------------------|-----------|
| [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4) | 73.2 |
| [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9) | 77.3 |
| [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18) | 81.0 |
| [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27)* | 80.3 |
| [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned) | 79.6 |
- (* size and corresponding projection head present in this model)
## Licence
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
# Citation
```
@article{gurioli2025modeltrainallhierarchical,
title={One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings},
author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli},
year={2025},
eprint={2503.03008},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.03008},
}
``` |