Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
andreagurioli1995 commited on
Commit
7b1dd54
·
verified ·
1 Parent(s): 13ccddb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -193
README.md CHANGED
@@ -1,27 +1,31 @@
1
  ---
2
  library_name: transformers
3
  datasets:
4
- - bigcode/the-stack-v2
5
  license: bigcode-openrail-m
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
 
 
 
 
 
 
12
 
 
13
 
14
- ## Model Details
15
 
16
- You can download the tokenizer following:
17
 
18
- from transformers import AutoTokenizer
 
 
19
 
20
- tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder")
21
 
22
- Input should take this format when tokenized:
23
 
24
- f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}"
25
 
26
  ### How to use
27
  ```python
@@ -39,7 +43,7 @@ tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder"
39
  code_snippet = "your code to embed here"
40
 
41
  #You should follow this pattern to embed a snippet of code
42
- sentence = f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}
43
 
44
  #Tokenizing your sentence
45
  tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
@@ -57,189 +61,23 @@ You will get as an output six elements:
57
  - seq_relationship_scores: prediction scores of in-context loss (concatenate multiple samples with the separator token if you want a meaningful score)
58
  - attentions: attention scores from the encoder
59
 
60
- ### Model Description
61
 
62
  <!-- Provide a longer summary of what this model is. -->
63
-
64
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
65
-
66
- - **Developed by:** [More Information Needed]
67
- - **Funded by [optional]:** [More Information Needed]
68
- - **Shared by [optional]:** [More Information Needed]
69
- - **Model type:** [More Information Needed]
70
- - **Language(s) (NLP):** [More Information Needed]
71
- - **License:** [More Information Needed]
72
- - **Finetuned from model [optional]:** [More Information Needed]
73
-
74
- ### Model Sources [optional]
75
-
76
- <!-- Provide the basic links for the model. -->
77
-
78
- - **Repository:** [More Information Needed]
79
- - **Paper [optional]:** [More Information Needed]
80
- - **Demo [optional]:** [More Information Needed]
81
-
82
- ## Uses
83
-
84
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
85
-
86
- ### Direct Use
87
-
88
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Downstream Use [optional]
93
-
94
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
95
-
96
- [More Information Needed]
97
-
98
- ### Out-of-Scope Use
99
-
100
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Bias, Risks, and Limitations
105
-
106
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
107
-
108
- [More Information Needed]
109
-
110
- ### Recommendations
111
-
112
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
113
-
114
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
115
-
116
- ## How to Get Started with the Model
117
-
118
- Use the code below to get started with the model.
119
-
120
- [More Information Needed]
121
-
122
- ## Training Details
123
-
124
- ### Training Data
125
-
126
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Training Procedure
131
-
132
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
133
-
134
- #### Preprocessing [optional]
135
-
136
- [More Information Needed]
137
-
138
-
139
- #### Training Hyperparameters
140
-
141
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
142
-
143
- #### Speeds, Sizes, Times [optional]
144
-
145
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
146
-
147
- [More Information Needed]
148
-
149
- ## Evaluation
150
-
151
- <!-- This section describes the evaluation protocols and provides the results. -->
152
-
153
- ### Testing Data, Factors & Metrics
154
-
155
- #### Testing Data
156
-
157
- <!-- This should link to a Dataset Card if possible. -->
158
-
159
- [More Information Needed]
160
-
161
- #### Factors
162
-
163
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
164
-
165
- [More Information Needed]
166
-
167
- #### Metrics
168
-
169
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
170
-
171
- [More Information Needed]
172
-
173
- ### Results
174
-
175
- [More Information Needed]
176
-
177
- #### Summary
178
-
179
-
180
-
181
- ## Model Examination [optional]
182
-
183
- <!-- Relevant interpretability work for the model goes here -->
184
-
185
- [More Information Needed]
186
-
187
- ## Environmental Impact
188
-
189
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
190
-
191
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
192
-
193
- - **Hardware Type:** [More Information Needed]
194
- - **Hours used:** [More Information Needed]
195
- - **Cloud Provider:** [More Information Needed]
196
- - **Compute Region:** [More Information Needed]
197
- - **Carbon Emitted:** [More Information Needed]
198
-
199
- ## Technical Specifications [optional]
200
-
201
- ### Model Architecture and Objective
202
-
203
- [More Information Needed]
204
-
205
- ### Compute Infrastructure
206
-
207
- [More Information Needed]
208
-
209
- #### Hardware
210
-
211
- [More Information Needed]
212
-
213
- #### Software
214
-
215
- [More Information Needed]
216
-
217
- ## Citation [optional]
218
-
219
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
220
-
221
- **BibTeX:**
222
-
223
- [More Information Needed]
224
-
225
- **APA:**
226
-
227
- [More Information Needed]
228
-
229
- ## Glossary [optional]
230
-
231
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
232
-
233
- [More Information Needed]
234
-
235
- ## More Information [optional]
236
-
237
- [More Information Needed]
238
-
239
- ## Model Card Authors [optional]
240
-
241
- [More Information Needed]
242
-
243
- ## Model Card Contact
244
-
245
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  datasets:
4
+ - bigcode/the-stack-v2-train-full-ids
5
  license: bigcode-openrail-m
6
  ---
7
 
8
+ # ModularStarEncoder-1B Pre-trained model
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
 
12
+ ModularStarEncoder-1B is an encoder pre-trained on [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train).
13
+ ModularStarEncoder is a modular pre-trained encoder with five exit points, allowing users to perform multiple exit fine-tuning depending on downstream tasks.
14
+ We built ModularStarEncoder on top of [StarCoder-2](https://huggingface.co/bigcode/starcoder2-15b), reducing its size from 15B to 1B parameters in bfloat16.
15
+ Our architecture consists of 36 hidden layers, each with 16 attention heads and 4 key-value heads, using Grouped Query Attention (GQA).
16
+ The model employs Rotary Positional Encoding (RoPE) with a base period theta = 10^-6 and features a hidden dimensionality of 1024 with an intermediate size of 12,288.
17
 
18
+ To enhance efficiency, we replaced the causal self-attention layers with bidirectional self-attention. Unlike [StarCoder-2](https://huggingface.co/bigcode/starcoder2-15b), which uses sliding window attention, we opted for full attention to ensure greater modularity, avoiding the receptive field constraints of sliding window mechanisms. Additionally, we extended the maximum input length to 2048 tokens, accommodating longer code snippets compared to prior code encoders such as [StarEncoder](https://huggingface.co/bigcode/starencoder).
19
 
20
+ Finally, our implementation integrates FlashAttention V2 for faster inference.
21
 
 
22
 
23
+ - **Paper:** [Link](arxiv.paper)
24
+ - **Languages:** 600+ Programming languages
25
+
26
 
 
27
 
 
28
 
 
29
 
30
  ### How to use
31
  ```python
 
43
  code_snippet = "your code to embed here"
44
 
45
  #You should follow this pattern to embed a snippet of code
46
+ sentence = f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}"
47
 
48
  #Tokenizing your sentence
49
  tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
 
61
  - seq_relationship_scores: prediction scores of in-context loss (concatenate multiple samples with the separator token if you want a meaningful score)
62
  - attentions: attention scores from the encoder
63
 
64
+ ### Training
65
 
66
  <!-- Provide a longer summary of what this model is. -->
67
+ We pre-trained ModularStarEncoder with a batch size of 3.99M tokens for 245,000 training steps, processing 1T tokens.
68
+ The pre-training and fine-tuning were conducted on 512 NVIDIA Ampere (64GB) GPUs using the [Leonardo](https://arxiv.org/abs/2307.16885) supercomputer, requiring 450,000 GPU working hours.
69
+
70
+ | Hyperparameter | Value |
71
+ |--------------------------|-----------|
72
+ | Hidden size | 1024 |
73
+ | Max. position embeddings | 2048 |
74
+ | Num. of attention heads | 12 |
75
+ | Num. of key values heads | 4 |
76
+ | Num. of hidden layers | 36 |
77
+ | Attention | GQA |
78
+ | Num. of parameters | ≈1B |
79
+ | Training tokens | ≈1T |
80
+ |Loss function |MLM + In-Context loss|
81
+
82
+ ## Licence
83
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).