Upload ModularStarEncoder
Browse files- config.json +4 -0
- config.py +81 -0
- modularStarEncoder.py +373 -0
config.json
CHANGED
@@ -3,6 +3,10 @@
|
|
3 |
"ModularStarEncoder"
|
4 |
],
|
5 |
"attention_dropout": 0.1,
|
|
|
|
|
|
|
|
|
6 |
"bos_token_id": 0,
|
7 |
"conditional_size": 4,
|
8 |
"embedding_dropout": 0.1,
|
|
|
3 |
"ModularStarEncoder"
|
4 |
],
|
5 |
"attention_dropout": 0.1,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "config.ModularStarEncoderConfig",
|
8 |
+
"AutoModel": "modularStarEncoder.ModularStarEncoder"
|
9 |
+
},
|
10 |
"bos_token_id": 0,
|
11 |
"conditional_size": 4,
|
12 |
"embedding_dropout": 0.1,
|
config.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
#STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
6 |
+
|
7 |
+
class ModularStarEncoderConfig(PretrainedConfig):
|
8 |
+
model_type = "ModularStarEncoder"
|
9 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
attention_dropout= 0.1,
|
14 |
+
residual_dropout= 0.1,
|
15 |
+
embedding_dropout= 0.1,
|
16 |
+
bos_token_id= 0,
|
17 |
+
eos_token_id= 0,
|
18 |
+
hidden_act= "gelu_pytorch_tanh",
|
19 |
+
_attn_implementation="flash_attention_2",
|
20 |
+
hidden_size= 1024,
|
21 |
+
conditional_size= 4,
|
22 |
+
initializer_range= 0.018042,
|
23 |
+
intermediate_size= 12288,
|
24 |
+
max_position_embeddings= 2048,
|
25 |
+
mlp_type= "default",
|
26 |
+
model_type= "starcoder2",
|
27 |
+
torch_dtype= "bfloat16",
|
28 |
+
layer_matryoshka_loss= True,
|
29 |
+
matryoshka_layers= [4,9,18,27,36],
|
30 |
+
norm_epsilon= 1e-05,
|
31 |
+
layer_norm_eps=1e-05,
|
32 |
+
norm_type= "layer_norm",
|
33 |
+
num_attention_heads= 16,
|
34 |
+
num_hidden_layers= 36,
|
35 |
+
num_key_value_heads= 4,
|
36 |
+
rope_theta= 999999.4420358813,
|
37 |
+
sliding_window= None,
|
38 |
+
transformers_version= "4.39.3",
|
39 |
+
use_bias= True,
|
40 |
+
use_cache= False,
|
41 |
+
vocab_size= 49156,
|
42 |
+
pad_token_id=0,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
if _attn_implementation not in ["flash_attention_2", "sdpa"]:
|
46 |
+
raise ValueError(f"`_attn_implementation` must be 'flash_attention_2', 'sdpa', got {_attn_implementation}.")
|
47 |
+
|
48 |
+
self.attention_dropout=attention_dropout ,
|
49 |
+
self.residual_dropout= residual_dropout,
|
50 |
+
self.embedding_dropout= embedding_dropout,
|
51 |
+
self.bos_token_id= bos_token_id,
|
52 |
+
self.eos_token_id= eos_token_id,
|
53 |
+
self.hidden_act= hidden_act,
|
54 |
+
self._attn_implementation=_attn_implementation,
|
55 |
+
self.hidden_size= hidden_size,
|
56 |
+
self.conditional_size= conditional_size,
|
57 |
+
self.initializer_range= initializer_range,
|
58 |
+
self.intermediate_size= intermediate_size,
|
59 |
+
self.max_position_embeddings= max_position_embeddings,
|
60 |
+
self.mlp_type= mlp_type,
|
61 |
+
self.model_type= model_type,
|
62 |
+
self.torch_dtype= torch_dtype,
|
63 |
+
self.layer_matryoshka_loss= layer_matryoshka_loss,
|
64 |
+
self.matryoshka_layers= matryoshka_layers,
|
65 |
+
self.norm_epsilon= norm_epsilon,
|
66 |
+
self.layer_norm_eps=layer_norm_eps,
|
67 |
+
self.norm_type= norm_type,
|
68 |
+
self.num_attention_heads= num_attention_heads,
|
69 |
+
self.num_hidden_layers= num_hidden_layers,
|
70 |
+
self.num_key_value_heads= num_key_value_heads,
|
71 |
+
self.rope_theta= rope_theta,
|
72 |
+
self.sliding_window= sliding_window,
|
73 |
+
self.transformers_version= transformers_version,
|
74 |
+
self.use_bias= use_bias,
|
75 |
+
self.use_cache= use_cache,
|
76 |
+
self.vocab_size= vocab_size,
|
77 |
+
self.pad_token_id=pad_token_id,
|
78 |
+
super().__init__(
|
79 |
+
bos_token_id=bos_token_id,
|
80 |
+
eos_token_id=eos_token_id,
|
81 |
+
**kwargs)
|
modularStarEncoder.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, Starcoder2Model, Starcoder2Config
|
2 |
+
from modularStarEncoder.config import ModularStarEncoderConfig
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import warnings
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
import sys
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
17 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
18 |
+
CausalLMOutputWithCrossAttentions,
|
19 |
+
MaskedLMOutput,
|
20 |
+
MultipleChoiceModelOutput,
|
21 |
+
NextSentencePredictorOutput,
|
22 |
+
QuestionAnsweringModelOutput,
|
23 |
+
SequenceClassifierOutput,
|
24 |
+
TokenClassifierOutput,
|
25 |
+
)
|
26 |
+
from transformers.modeling_utils import PreTrainedModel
|
27 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
28 |
+
from transformers.utils import (
|
29 |
+
ModelOutput,
|
30 |
+
add_code_sample_docstrings,
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
class StarEncoder2PreTrainedModel(PreTrainedModel):
|
40 |
+
"""
|
41 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
42 |
+
models.
|
43 |
+
"""
|
44 |
+
|
45 |
+
config_class = ModularStarEncoderConfig
|
46 |
+
base_model_prefix = "ModularStarEncoder"
|
47 |
+
model_type = "ModularStarEncoder"
|
48 |
+
supports_gradient_checkpointing = True
|
49 |
+
_supports_flash_attn_2 = True
|
50 |
+
_supports_sdpa = True
|
51 |
+
_supports_cache_class = True
|
52 |
+
|
53 |
+
# def __init__(self):
|
54 |
+
# self._supports_flash_attn_2 = True
|
55 |
+
# super().__init__()
|
56 |
+
|
57 |
+
|
58 |
+
def _init_weights(self, module):
|
59 |
+
"""Initialize the weights"""
|
60 |
+
if isinstance(module, nn.Linear):
|
61 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
62 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
63 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
64 |
+
if module.bias is not None:
|
65 |
+
module.bias.data.zero_()
|
66 |
+
elif isinstance(module, nn.Embedding):
|
67 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
68 |
+
if module.padding_idx is not None:
|
69 |
+
module.weight.data[module.padding_idx].zero_()
|
70 |
+
elif isinstance(module, nn.LayerNorm):
|
71 |
+
module.bias.data.zero_()
|
72 |
+
module.weight.data.fill_(1.0)
|
73 |
+
|
74 |
+
class StarEncoder2Pooler(nn.Module):
|
75 |
+
def __init__(self, config):
|
76 |
+
super().__init__()
|
77 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
78 |
+
self.activation = nn.Tanh()
|
79 |
+
|
80 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
81 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
82 |
+
# to the last token.
|
83 |
+
last_token_tensor = hidden_states[:, -1]
|
84 |
+
pooled_output = self.dense(last_token_tensor)
|
85 |
+
pooled_output = self.activation(pooled_output)
|
86 |
+
return pooled_output
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class ModularStarEncoderOutput(ModelOutput):
|
90 |
+
"""
|
91 |
+
Output type of [`BertForPreTraining`].
|
92 |
+
|
93 |
+
Args:
|
94 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
95 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
96 |
+
(classification) loss.
|
97 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
98 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
99 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
100 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
101 |
+
before SoftMax).
|
102 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
103 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
104 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
105 |
+
|
106 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
107 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
108 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
109 |
+
sequence_length)`.
|
110 |
+
|
111 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
112 |
+
heads.
|
113 |
+
"""
|
114 |
+
|
115 |
+
loss: Optional[torch.FloatTensor] = None
|
116 |
+
prediction_logits: torch.FloatTensor = None
|
117 |
+
seq_relationship_logits: torch.FloatTensor = None
|
118 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
119 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
class StarEncoder2PredictionHeadTransform(nn.Module):
|
125 |
+
def __init__(self, config):
|
126 |
+
super().__init__()
|
127 |
+
self.is_matryoshka = config.layer_matryoshka_loss
|
128 |
+
|
129 |
+
if self.is_matryoshka:
|
130 |
+
self.dense = nn.Linear(config.hidden_size + config.conditional_size, config.hidden_size + config.conditional_size)
|
131 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size + config.conditional_size, eps=config.layer_norm_eps)
|
132 |
+
|
133 |
+
else:
|
134 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
135 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
136 |
+
|
137 |
+
if isinstance(config.hidden_act, str):
|
138 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
139 |
+
else:
|
140 |
+
self.transform_act_fn = config.hidden_act
|
141 |
+
|
142 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
143 |
+
hidden_states = self.dense(hidden_states)
|
144 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
145 |
+
hidden_states = self.LayerNorm(hidden_states)
|
146 |
+
return hidden_states
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
class StarEncoder2LMPredictionHead(nn.Module):
|
151 |
+
def __init__(self, config):
|
152 |
+
super().__init__()
|
153 |
+
for element in dir(config):
|
154 |
+
value = getattr(config, element) # Get the attribute value
|
155 |
+
if isinstance(value, tuple) or isinstance(value, list):
|
156 |
+
setattr(config, element, value[0] )
|
157 |
+
self.transform = StarEncoder2PredictionHeadTransform(config)
|
158 |
+
|
159 |
+
# The output weights are the same as the input embeddings, but there is
|
160 |
+
# an output-only bias for each token.
|
161 |
+
self.is_matryoshka = config.layer_matryoshka_loss
|
162 |
+
|
163 |
+
if self.is_matryoshka:
|
164 |
+
self.decoder = nn.Linear(config.hidden_size + config.conditional_size, config.vocab_size, bias=False)
|
165 |
+
else:
|
166 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
167 |
+
|
168 |
+
|
169 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
170 |
+
|
171 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
172 |
+
self.decoder.bias = self.bias
|
173 |
+
|
174 |
+
def forward(self, hidden_states):
|
175 |
+
hidden_states = self.transform(hidden_states)
|
176 |
+
hidden_states = self.decoder(hidden_states)
|
177 |
+
return hidden_states
|
178 |
+
|
179 |
+
class StarEncoder2PreTrainingHeads(nn.Module):
|
180 |
+
def __init__(self, config):
|
181 |
+
super().__init__()
|
182 |
+
self.predictions = StarEncoder2LMPredictionHead(config)
|
183 |
+
self.is_matryoshka = config.layer_matryoshka_loss
|
184 |
+
if self.is_matryoshka:
|
185 |
+
self.seq_relationship = nn.Linear(config.hidden_size + config.conditional_size, 2)
|
186 |
+
self.conditional_embeddings = nn.Embedding(len(config.matryoshka_layers),config.conditional_size)
|
187 |
+
else:
|
188 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
def forward(self, sequence_output, pooled_output,idx_layer: Optional[torch.Tensor] = None):
|
193 |
+
if self.is_matryoshka:
|
194 |
+
prediction_scores = self.predictions(torch.cat([sequence_output , self.conditional_embeddings(torch.tensor(idx_layer,device=sequence_output.get_device()).int()).expand(sequence_output.size()[0],sequence_output.size()[1],-1)],dim=-1))
|
195 |
+
seq_relationship_score = self.seq_relationship(torch.cat([pooled_output , self.conditional_embeddings(torch.tensor(idx_layer,device=pooled_output.get_device()).int()).expand(pooled_output.size()[0],-1)],dim=-1))
|
196 |
+
else:
|
197 |
+
prediction_scores = self.predictions(sequence_output)
|
198 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
199 |
+
return prediction_scores, seq_relationship_score
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
class ModularStarEncoder(StarEncoder2PreTrainedModel):
|
206 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
207 |
+
config_class = ModularStarEncoderConfig
|
208 |
+
def __init__(self, config):
|
209 |
+
super().__init__(config)
|
210 |
+
self.model_type = "ModularStarEncoder"
|
211 |
+
self.cls = StarEncoder2PreTrainingHeads(config)
|
212 |
+
self.layer_matryoshka_loss = config.layer_matryoshka_loss
|
213 |
+
self.matryoshka_layers = config.matryoshka_layers
|
214 |
+
|
215 |
+
if self.layer_matryoshka_loss:
|
216 |
+
config.sliding_window = None
|
217 |
+
logger.warning_once(
|
218 |
+
"The matryoshka loss is implemented without sliding_window, if you want to use the sliding window set sliding_window to True"
|
219 |
+
)
|
220 |
+
if self.matryoshka_layers[-1] != config.num_hidden_layers:
|
221 |
+
logger.warning_once(
|
222 |
+
f"To get optimal results, the last layer on matryoshka layers, which now is {self.matryoshka_layers[-1]} "
|
223 |
+
"must be set as the overall number of hidden layers."
|
224 |
+
f"The overall number of hidden layers is now set to {config.num_hidden_layers}"
|
225 |
+
)
|
226 |
+
sys.exit()
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
self.starEncoder2 = Starcoder2Model(config)
|
231 |
+
|
232 |
+
|
233 |
+
self.pooler = StarEncoder2Pooler(config)
|
234 |
+
|
235 |
+
#setting off causal masking
|
236 |
+
for layer in self.starEncoder2.layers:
|
237 |
+
layer.self_attn.is_causal=False
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
# Initialize weights and apply final processing
|
242 |
+
self.post_init()
|
243 |
+
|
244 |
+
# def get_output_embeddings(self):
|
245 |
+
# return self.cls.predictions.decoder
|
246 |
+
|
247 |
+
# def set_output_embeddings(self, new_embeddings):
|
248 |
+
# self.cls.predictions.decoder = new_embeddings
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
def forward(
|
253 |
+
self,
|
254 |
+
input_ids: Optional[torch.Tensor] = None,
|
255 |
+
attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
#token_type_ids: Optional[torch.Tensor] = None,
|
257 |
+
position_ids: Optional[torch.Tensor] = None,
|
258 |
+
head_mask: Optional[torch.Tensor] = None,
|
259 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
260 |
+
labels: Optional[torch.Tensor] = None,
|
261 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
262 |
+
output_attentions: Optional[bool] = None,
|
263 |
+
output_hidden_states: Optional[bool] = None,
|
264 |
+
return_dict: Optional[bool] = None,
|
265 |
+
) -> Union[Tuple[torch.Tensor], ModularStarEncoderOutput]:
|
266 |
+
r"""
|
267 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
268 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
269 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
270 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
271 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
272 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
273 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
274 |
+
|
275 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
276 |
+
- 1 indicates sequence B is a random sequence.
|
277 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
278 |
+
Used to hide legacy arguments that have been deprecated.
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
|
282 |
+
Example:
|
283 |
+
|
284 |
+
```python
|
285 |
+
>>> from transformers import AutoTokenizer, BertForPreTraining
|
286 |
+
>>> import torch
|
287 |
+
|
288 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
289 |
+
>>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
290 |
+
|
291 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
292 |
+
>>> outputs = model(**inputs)
|
293 |
+
|
294 |
+
>>> prediction_logits = outputs.prediction_logits
|
295 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
296 |
+
```
|
297 |
+
"""
|
298 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
299 |
+
|
300 |
+
outputs = self.starEncoder2(
|
301 |
+
input_ids,
|
302 |
+
attention_mask=attention_mask,
|
303 |
+
# token_type_ids=token_type_ids,
|
304 |
+
position_ids=position_ids,
|
305 |
+
# head_mask=head_mask,
|
306 |
+
inputs_embeds=inputs_embeds,
|
307 |
+
output_attentions=output_attentions,
|
308 |
+
output_hidden_states=True,
|
309 |
+
return_dict=return_dict,
|
310 |
+
)
|
311 |
+
|
312 |
+
|
313 |
+
#TODO FIX FOR EFFICIENCY, COMPUTE FORWARD PASS JUST ON MATRYOSKA LAYERS
|
314 |
+
#if layer matryoshka on, compute the scores for all the heads
|
315 |
+
if self.layer_matryoshka_loss:
|
316 |
+
prediction_scores = []
|
317 |
+
seq_relationship_score = []
|
318 |
+
#for layer in outputs.hidden_states:
|
319 |
+
for counter,idx_layer in enumerate(self.matryoshka_layers):
|
320 |
+
|
321 |
+
#pooling head to project last hidden states as CLS token is in the last position
|
322 |
+
pooled_output = self.pooler(outputs.hidden_states[idx_layer])
|
323 |
+
#all the hidden states related to the last layer
|
324 |
+
sequence_output = outputs.hidden_states[idx_layer]
|
325 |
+
temp_prediction_scores, temp_seq_relationship_score = self.cls(sequence_output, pooled_output,counter)
|
326 |
+
prediction_scores.append(temp_prediction_scores)
|
327 |
+
seq_relationship_score.append(temp_seq_relationship_score)
|
328 |
+
else:
|
329 |
+
#pooling head to project last hidden states as CLS token is in the last position
|
330 |
+
pooled_output = self.pooler(outputs.last_hidden_state)
|
331 |
+
#all the hidden states related to the last layer
|
332 |
+
sequence_output = outputs.last_hidden_state
|
333 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
334 |
+
|
335 |
+
total_loss = None
|
336 |
+
if labels is not None and next_sentence_label is not None and not self.layer_matryoshka_loss:
|
337 |
+
loss_fct = CrossEntropyLoss()
|
338 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
339 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
340 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
341 |
+
|
342 |
+
elif labels is not None and next_sentence_label is not None and self.layer_matryoshka_loss:
|
343 |
+
loss_fct = CrossEntropyLoss()
|
344 |
+
num_layers = len(prediction_scores)
|
345 |
+
|
346 |
+
#for layer in self.matryoshka_layers: seq_relationship_score
|
347 |
+
for index in range(num_layers):
|
348 |
+
masked_lm_loss = loss_fct(prediction_scores[index].view(-1, self.config.vocab_size), labels.view(-1))
|
349 |
+
next_sentence_loss = loss_fct(seq_relationship_score[index].view(-1, 2), next_sentence_label.view(-1))
|
350 |
+
if total_loss:
|
351 |
+
total_loss += (masked_lm_loss + next_sentence_loss) * ((index+1)/num_layers)
|
352 |
+
else:
|
353 |
+
total_loss = (masked_lm_loss + next_sentence_loss) * ((index+1)/num_layers)
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
if not return_dict:
|
359 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
360 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
361 |
+
|
362 |
+
return ModularStarEncoderOutput(
|
363 |
+
loss=total_loss,
|
364 |
+
prediction_logits=prediction_scores,
|
365 |
+
seq_relationship_logits=seq_relationship_score,
|
366 |
+
hidden_states=outputs.hidden_states,
|
367 |
+
attentions=outputs.attentions,
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|