Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
andreagurioli1995 commited on
Commit
dde6157
·
verified ·
1 Parent(s): 329a1be

Upload ModularStarEncoder

Browse files
Files changed (3) hide show
  1. config.json +4 -0
  2. config.py +81 -0
  3. modularStarEncoder.py +373 -0
config.json CHANGED
@@ -3,6 +3,10 @@
3
  "ModularStarEncoder"
4
  ],
5
  "attention_dropout": 0.1,
 
 
 
 
6
  "bos_token_id": 0,
7
  "conditional_size": 4,
8
  "embedding_dropout": 0.1,
 
3
  "ModularStarEncoder"
4
  ],
5
  "attention_dropout": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "config.ModularStarEncoderConfig",
8
+ "AutoModel": "modularStarEncoder.ModularStarEncoder"
9
+ },
10
  "bos_token_id": 0,
11
  "conditional_size": 4,
12
  "embedding_dropout": 0.1,
config.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ #STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
6
+
7
+ class ModularStarEncoderConfig(PretrainedConfig):
8
+ model_type = "ModularStarEncoder"
9
+ keys_to_ignore_at_inference = ["past_key_values"]
10
+
11
+ def __init__(
12
+ self,
13
+ attention_dropout= 0.1,
14
+ residual_dropout= 0.1,
15
+ embedding_dropout= 0.1,
16
+ bos_token_id= 0,
17
+ eos_token_id= 0,
18
+ hidden_act= "gelu_pytorch_tanh",
19
+ _attn_implementation="flash_attention_2",
20
+ hidden_size= 1024,
21
+ conditional_size= 4,
22
+ initializer_range= 0.018042,
23
+ intermediate_size= 12288,
24
+ max_position_embeddings= 2048,
25
+ mlp_type= "default",
26
+ model_type= "starcoder2",
27
+ torch_dtype= "bfloat16",
28
+ layer_matryoshka_loss= True,
29
+ matryoshka_layers= [4,9,18,27,36],
30
+ norm_epsilon= 1e-05,
31
+ layer_norm_eps=1e-05,
32
+ norm_type= "layer_norm",
33
+ num_attention_heads= 16,
34
+ num_hidden_layers= 36,
35
+ num_key_value_heads= 4,
36
+ rope_theta= 999999.4420358813,
37
+ sliding_window= None,
38
+ transformers_version= "4.39.3",
39
+ use_bias= True,
40
+ use_cache= False,
41
+ vocab_size= 49156,
42
+ pad_token_id=0,
43
+ **kwargs,
44
+ ):
45
+ if _attn_implementation not in ["flash_attention_2", "sdpa"]:
46
+ raise ValueError(f"`_attn_implementation` must be 'flash_attention_2', 'sdpa', got {_attn_implementation}.")
47
+
48
+ self.attention_dropout=attention_dropout ,
49
+ self.residual_dropout= residual_dropout,
50
+ self.embedding_dropout= embedding_dropout,
51
+ self.bos_token_id= bos_token_id,
52
+ self.eos_token_id= eos_token_id,
53
+ self.hidden_act= hidden_act,
54
+ self._attn_implementation=_attn_implementation,
55
+ self.hidden_size= hidden_size,
56
+ self.conditional_size= conditional_size,
57
+ self.initializer_range= initializer_range,
58
+ self.intermediate_size= intermediate_size,
59
+ self.max_position_embeddings= max_position_embeddings,
60
+ self.mlp_type= mlp_type,
61
+ self.model_type= model_type,
62
+ self.torch_dtype= torch_dtype,
63
+ self.layer_matryoshka_loss= layer_matryoshka_loss,
64
+ self.matryoshka_layers= matryoshka_layers,
65
+ self.norm_epsilon= norm_epsilon,
66
+ self.layer_norm_eps=layer_norm_eps,
67
+ self.norm_type= norm_type,
68
+ self.num_attention_heads= num_attention_heads,
69
+ self.num_hidden_layers= num_hidden_layers,
70
+ self.num_key_value_heads= num_key_value_heads,
71
+ self.rope_theta= rope_theta,
72
+ self.sliding_window= sliding_window,
73
+ self.transformers_version= transformers_version,
74
+ self.use_bias= use_bias,
75
+ self.use_cache= use_cache,
76
+ self.vocab_size= vocab_size,
77
+ self.pad_token_id=pad_token_id,
78
+ super().__init__(
79
+ bos_token_id=bos_token_id,
80
+ eos_token_id=eos_token_id,
81
+ **kwargs)
modularStarEncoder.py ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoConfig, Starcoder2Model, Starcoder2Config
2
+ from modularStarEncoder.config import ModularStarEncoderConfig
3
+ import math
4
+ import os
5
+ import warnings
6
+ from dataclasses import dataclass
7
+ from typing import List, Optional, Tuple, Union
8
+ import sys
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (
16
+ BaseModelOutputWithPastAndCrossAttentions,
17
+ BaseModelOutputWithPoolingAndCrossAttentions,
18
+ CausalLMOutputWithCrossAttentions,
19
+ MaskedLMOutput,
20
+ MultipleChoiceModelOutput,
21
+ NextSentencePredictorOutput,
22
+ QuestionAnsweringModelOutput,
23
+ SequenceClassifierOutput,
24
+ TokenClassifierOutput,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
28
+ from transformers.utils import (
29
+ ModelOutput,
30
+ add_code_sample_docstrings,
31
+ add_start_docstrings,
32
+ add_start_docstrings_to_model_forward,
33
+ logging,
34
+ replace_return_docstrings,
35
+ )
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ class StarEncoder2PreTrainedModel(PreTrainedModel):
40
+ """
41
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
42
+ models.
43
+ """
44
+
45
+ config_class = ModularStarEncoderConfig
46
+ base_model_prefix = "ModularStarEncoder"
47
+ model_type = "ModularStarEncoder"
48
+ supports_gradient_checkpointing = True
49
+ _supports_flash_attn_2 = True
50
+ _supports_sdpa = True
51
+ _supports_cache_class = True
52
+
53
+ # def __init__(self):
54
+ # self._supports_flash_attn_2 = True
55
+ # super().__init__()
56
+
57
+
58
+ def _init_weights(self, module):
59
+ """Initialize the weights"""
60
+ if isinstance(module, nn.Linear):
61
+ # Slightly different from the TF version which uses truncated_normal for initialization
62
+ # cf https://github.com/pytorch/pytorch/pull/5617
63
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
64
+ if module.bias is not None:
65
+ module.bias.data.zero_()
66
+ elif isinstance(module, nn.Embedding):
67
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
68
+ if module.padding_idx is not None:
69
+ module.weight.data[module.padding_idx].zero_()
70
+ elif isinstance(module, nn.LayerNorm):
71
+ module.bias.data.zero_()
72
+ module.weight.data.fill_(1.0)
73
+
74
+ class StarEncoder2Pooler(nn.Module):
75
+ def __init__(self, config):
76
+ super().__init__()
77
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
78
+ self.activation = nn.Tanh()
79
+
80
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
81
+ # We "pool" the model by simply taking the hidden state corresponding
82
+ # to the last token.
83
+ last_token_tensor = hidden_states[:, -1]
84
+ pooled_output = self.dense(last_token_tensor)
85
+ pooled_output = self.activation(pooled_output)
86
+ return pooled_output
87
+
88
+ @dataclass
89
+ class ModularStarEncoderOutput(ModelOutput):
90
+ """
91
+ Output type of [`BertForPreTraining`].
92
+
93
+ Args:
94
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
95
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
96
+ (classification) loss.
97
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
98
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
99
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
100
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
101
+ before SoftMax).
102
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
103
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
104
+ shape `(batch_size, sequence_length, hidden_size)`.
105
+
106
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
107
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
108
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
109
+ sequence_length)`.
110
+
111
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
112
+ heads.
113
+ """
114
+
115
+ loss: Optional[torch.FloatTensor] = None
116
+ prediction_logits: torch.FloatTensor = None
117
+ seq_relationship_logits: torch.FloatTensor = None
118
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
119
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
120
+
121
+
122
+
123
+
124
+ class StarEncoder2PredictionHeadTransform(nn.Module):
125
+ def __init__(self, config):
126
+ super().__init__()
127
+ self.is_matryoshka = config.layer_matryoshka_loss
128
+
129
+ if self.is_matryoshka:
130
+ self.dense = nn.Linear(config.hidden_size + config.conditional_size, config.hidden_size + config.conditional_size)
131
+ self.LayerNorm = nn.LayerNorm(config.hidden_size + config.conditional_size, eps=config.layer_norm_eps)
132
+
133
+ else:
134
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
135
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
136
+
137
+ if isinstance(config.hidden_act, str):
138
+ self.transform_act_fn = ACT2FN[config.hidden_act]
139
+ else:
140
+ self.transform_act_fn = config.hidden_act
141
+
142
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
143
+ hidden_states = self.dense(hidden_states)
144
+ hidden_states = self.transform_act_fn(hidden_states)
145
+ hidden_states = self.LayerNorm(hidden_states)
146
+ return hidden_states
147
+
148
+
149
+
150
+ class StarEncoder2LMPredictionHead(nn.Module):
151
+ def __init__(self, config):
152
+ super().__init__()
153
+ for element in dir(config):
154
+ value = getattr(config, element) # Get the attribute value
155
+ if isinstance(value, tuple) or isinstance(value, list):
156
+ setattr(config, element, value[0] )
157
+ self.transform = StarEncoder2PredictionHeadTransform(config)
158
+
159
+ # The output weights are the same as the input embeddings, but there is
160
+ # an output-only bias for each token.
161
+ self.is_matryoshka = config.layer_matryoshka_loss
162
+
163
+ if self.is_matryoshka:
164
+ self.decoder = nn.Linear(config.hidden_size + config.conditional_size, config.vocab_size, bias=False)
165
+ else:
166
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
167
+
168
+
169
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
170
+
171
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
172
+ self.decoder.bias = self.bias
173
+
174
+ def forward(self, hidden_states):
175
+ hidden_states = self.transform(hidden_states)
176
+ hidden_states = self.decoder(hidden_states)
177
+ return hidden_states
178
+
179
+ class StarEncoder2PreTrainingHeads(nn.Module):
180
+ def __init__(self, config):
181
+ super().__init__()
182
+ self.predictions = StarEncoder2LMPredictionHead(config)
183
+ self.is_matryoshka = config.layer_matryoshka_loss
184
+ if self.is_matryoshka:
185
+ self.seq_relationship = nn.Linear(config.hidden_size + config.conditional_size, 2)
186
+ self.conditional_embeddings = nn.Embedding(len(config.matryoshka_layers),config.conditional_size)
187
+ else:
188
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
189
+
190
+
191
+
192
+ def forward(self, sequence_output, pooled_output,idx_layer: Optional[torch.Tensor] = None):
193
+ if self.is_matryoshka:
194
+ prediction_scores = self.predictions(torch.cat([sequence_output , self.conditional_embeddings(torch.tensor(idx_layer,device=sequence_output.get_device()).int()).expand(sequence_output.size()[0],sequence_output.size()[1],-1)],dim=-1))
195
+ seq_relationship_score = self.seq_relationship(torch.cat([pooled_output , self.conditional_embeddings(torch.tensor(idx_layer,device=pooled_output.get_device()).int()).expand(pooled_output.size()[0],-1)],dim=-1))
196
+ else:
197
+ prediction_scores = self.predictions(sequence_output)
198
+ seq_relationship_score = self.seq_relationship(pooled_output)
199
+ return prediction_scores, seq_relationship_score
200
+
201
+
202
+
203
+
204
+
205
+ class ModularStarEncoder(StarEncoder2PreTrainedModel):
206
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
207
+ config_class = ModularStarEncoderConfig
208
+ def __init__(self, config):
209
+ super().__init__(config)
210
+ self.model_type = "ModularStarEncoder"
211
+ self.cls = StarEncoder2PreTrainingHeads(config)
212
+ self.layer_matryoshka_loss = config.layer_matryoshka_loss
213
+ self.matryoshka_layers = config.matryoshka_layers
214
+
215
+ if self.layer_matryoshka_loss:
216
+ config.sliding_window = None
217
+ logger.warning_once(
218
+ "The matryoshka loss is implemented without sliding_window, if you want to use the sliding window set sliding_window to True"
219
+ )
220
+ if self.matryoshka_layers[-1] != config.num_hidden_layers:
221
+ logger.warning_once(
222
+ f"To get optimal results, the last layer on matryoshka layers, which now is {self.matryoshka_layers[-1]} "
223
+ "must be set as the overall number of hidden layers."
224
+ f"The overall number of hidden layers is now set to {config.num_hidden_layers}"
225
+ )
226
+ sys.exit()
227
+
228
+
229
+
230
+ self.starEncoder2 = Starcoder2Model(config)
231
+
232
+
233
+ self.pooler = StarEncoder2Pooler(config)
234
+
235
+ #setting off causal masking
236
+ for layer in self.starEncoder2.layers:
237
+ layer.self_attn.is_causal=False
238
+
239
+
240
+
241
+ # Initialize weights and apply final processing
242
+ self.post_init()
243
+
244
+ # def get_output_embeddings(self):
245
+ # return self.cls.predictions.decoder
246
+
247
+ # def set_output_embeddings(self, new_embeddings):
248
+ # self.cls.predictions.decoder = new_embeddings
249
+
250
+
251
+
252
+ def forward(
253
+ self,
254
+ input_ids: Optional[torch.Tensor] = None,
255
+ attention_mask: Optional[torch.Tensor] = None,
256
+ #token_type_ids: Optional[torch.Tensor] = None,
257
+ position_ids: Optional[torch.Tensor] = None,
258
+ head_mask: Optional[torch.Tensor] = None,
259
+ inputs_embeds: Optional[torch.Tensor] = None,
260
+ labels: Optional[torch.Tensor] = None,
261
+ next_sentence_label: Optional[torch.Tensor] = None,
262
+ output_attentions: Optional[bool] = None,
263
+ output_hidden_states: Optional[bool] = None,
264
+ return_dict: Optional[bool] = None,
265
+ ) -> Union[Tuple[torch.Tensor], ModularStarEncoderOutput]:
266
+ r"""
267
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
268
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
269
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
270
+ the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
271
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
272
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
273
+ pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
274
+
275
+ - 0 indicates sequence B is a continuation of sequence A,
276
+ - 1 indicates sequence B is a random sequence.
277
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
278
+ Used to hide legacy arguments that have been deprecated.
279
+
280
+ Returns:
281
+
282
+ Example:
283
+
284
+ ```python
285
+ >>> from transformers import AutoTokenizer, BertForPreTraining
286
+ >>> import torch
287
+
288
+ >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
289
+ >>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
290
+
291
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
292
+ >>> outputs = model(**inputs)
293
+
294
+ >>> prediction_logits = outputs.prediction_logits
295
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
296
+ ```
297
+ """
298
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
299
+
300
+ outputs = self.starEncoder2(
301
+ input_ids,
302
+ attention_mask=attention_mask,
303
+ # token_type_ids=token_type_ids,
304
+ position_ids=position_ids,
305
+ # head_mask=head_mask,
306
+ inputs_embeds=inputs_embeds,
307
+ output_attentions=output_attentions,
308
+ output_hidden_states=True,
309
+ return_dict=return_dict,
310
+ )
311
+
312
+
313
+ #TODO FIX FOR EFFICIENCY, COMPUTE FORWARD PASS JUST ON MATRYOSKA LAYERS
314
+ #if layer matryoshka on, compute the scores for all the heads
315
+ if self.layer_matryoshka_loss:
316
+ prediction_scores = []
317
+ seq_relationship_score = []
318
+ #for layer in outputs.hidden_states:
319
+ for counter,idx_layer in enumerate(self.matryoshka_layers):
320
+
321
+ #pooling head to project last hidden states as CLS token is in the last position
322
+ pooled_output = self.pooler(outputs.hidden_states[idx_layer])
323
+ #all the hidden states related to the last layer
324
+ sequence_output = outputs.hidden_states[idx_layer]
325
+ temp_prediction_scores, temp_seq_relationship_score = self.cls(sequence_output, pooled_output,counter)
326
+ prediction_scores.append(temp_prediction_scores)
327
+ seq_relationship_score.append(temp_seq_relationship_score)
328
+ else:
329
+ #pooling head to project last hidden states as CLS token is in the last position
330
+ pooled_output = self.pooler(outputs.last_hidden_state)
331
+ #all the hidden states related to the last layer
332
+ sequence_output = outputs.last_hidden_state
333
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
334
+
335
+ total_loss = None
336
+ if labels is not None and next_sentence_label is not None and not self.layer_matryoshka_loss:
337
+ loss_fct = CrossEntropyLoss()
338
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
339
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
340
+ total_loss = masked_lm_loss + next_sentence_loss
341
+
342
+ elif labels is not None and next_sentence_label is not None and self.layer_matryoshka_loss:
343
+ loss_fct = CrossEntropyLoss()
344
+ num_layers = len(prediction_scores)
345
+
346
+ #for layer in self.matryoshka_layers: seq_relationship_score
347
+ for index in range(num_layers):
348
+ masked_lm_loss = loss_fct(prediction_scores[index].view(-1, self.config.vocab_size), labels.view(-1))
349
+ next_sentence_loss = loss_fct(seq_relationship_score[index].view(-1, 2), next_sentence_label.view(-1))
350
+ if total_loss:
351
+ total_loss += (masked_lm_loss + next_sentence_loss) * ((index+1)/num_layers)
352
+ else:
353
+ total_loss = (masked_lm_loss + next_sentence_loss) * ((index+1)/num_layers)
354
+
355
+
356
+
357
+
358
+ if not return_dict:
359
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
360
+ return ((total_loss,) + output) if total_loss is not None else output
361
+
362
+ return ModularStarEncoderOutput(
363
+ loss=total_loss,
364
+ prediction_logits=prediction_scores,
365
+ seq_relationship_logits=seq_relationship_score,
366
+ hidden_states=outputs.hidden_states,
367
+ attentions=outputs.attentions,
368
+ )
369
+
370
+
371
+
372
+
373
+