File size: 2,005 Bytes
f0c0142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
metrics:
- rouge
model-index:
- name: mistral_charttotext_FV
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_charttotext_FV

This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5696
- Rouge1: 0.8028
- Rougel: 0.7560

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.6658        | 0.9980 | 380  | 0.5965          | 0.7724 | 0.7264 |
| 0.5686        | 1.9987 | 761  | 0.5753          | 0.7833 | 0.7375 |
| 0.5714        | 2.9980 | 1140 | 0.5517          | 0.8027 | 0.7613 |
| 0.5672        | 3.9980 | 1520 | 0.5664          | 0.8067 | 0.7564 |
| 0.5136        | 4.9980 | 1900 | 0.5672          | 0.8053 | 0.7572 |
| 0.5118        | 5.9980 | 2280 | 0.5696          | 0.8028 | 0.7560 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.2.0
- Datasets 2.16.0
- Tokenizers 0.19.1