File size: 15,585 Bytes
6749e9f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f90dbece710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f90dbed97c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684514835786653305, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiUO0PgvrqrxW3/U+iUO0PgvrqrxW3/U+iUO0PgvrqrxW3/U+iUO0PgvrqrxW3/U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgsNzP2bijb+gHJC/2FYbP81aoL/zR8Q/S9CtP6C+jb5Gx6K/0IRaP1DVar9e67q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJQ7Q+C+uqvFbf9T57nIY8xJ+1uyDTNjyJQ7Q+C+uqvFbf9T57nIY8xJ+1uyDTNjyJQ7Q+C+uqvFbf9T57nIY8xJ+1uyDTNjyJQ7Q+C+uqvFbf9T57nIY8xJ+1uyDTNjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35207775 -0.02086403  0.48021954]\n [ 0.35207775 -0.02086403  0.48021954]\n [ 0.35207775 -0.02086403  0.48021954]\n [ 0.35207775 -0.02086403  0.48021954]]", "desired_goal": "[[ 0.95220196 -1.1084716  -1.1258736 ]\n [ 0.6067939  -1.252771    1.5334457 ]\n [ 1.3579191  -0.27684498 -1.2717063 ]\n [ 0.85358906 -0.9173174  -1.4603078 ]]", "observation": "[[ 0.35207775 -0.02086403  0.48021954  0.01643204 -0.00554273  0.01115873]\n [ 0.35207775 -0.02086403  0.48021954  0.01643204 -0.00554273  0.01115873]\n [ 0.35207775 -0.02086403  0.48021954  0.01643204 -0.00554273  0.01115873]\n [ 0.35207775 -0.02086403  0.48021954  0.01643204 -0.00554273  0.01115873]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKQNUvZMoDb5880g9X70CPrU5ET5NIDs9QSKsvRt3uD1gobs9IofqvVTD5buJdJ49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.05176083 -0.13785009  0.04906033]\n [ 0.12767552  0.1418217   0.0456851 ]\n [-0.08404971  0.09007093  0.09161639]\n [-0.11451556 -0.00701181  0.07737071]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyy4YXHMXF8CUhpRSlIwBbJRLMowBdJRHQKd7iuez2OB1fZQoaAZoCWgPQwgJGF3eHC4SwJSGlFKUaBVLMmgWR0Cne06fzz3AdX2UKGgGaAloD0MIOfJAZJFmFMCUhpRSlGgVSzJoFkdAp3sMHMUypXV9lChoBmgJaA9DCAZmhSLdXxPAlIaUUpRoFUsyaBZHQKd6zXBguyx1fZQoaAZoCWgPQwiInSl0XsMKwJSGlFKUaBVLMmgWR0CnfI1UVBUrdX2UKGgGaAloD0MIkpIehlZHDMCUhpRSlGgVSzJoFkdAp3xQXKr7wnV9lChoBmgJaA9DCNszSwLU1AzAlIaUUpRoFUsyaBZHQKd8Daews5J1fZQoaAZoCWgPQwji5H6HonAVwJSGlFKUaBVLMmgWR0Cne87T2FnJdX2UKGgGaAloD0MIBVJi1/bmFsCUhpRSlGgVSzJoFkdAp32E21lXinV9lChoBmgJaA9DCCPZI9QMqQ/AlIaUUpRoFUsyaBZHQKd9R6wdKdx1fZQoaAZoCWgPQwgQW3o01XMSwJSGlFKUaBVLMmgWR0CnfQUDdP+GdX2UKGgGaAloD0MIliTP9X0YBMCUhpRSlGgVSzJoFkdAp3zGK2rn1XV9lChoBmgJaA9DCAbZsnxdhgrAlIaUUpRoFUsyaBZHQKd+jpHI6sB1fZQoaAZoCWgPQwhLkXwlkDIMwJSGlFKUaBVLMmgWR0CnflFyBCladX2UKGgGaAloD0MIfgBSmzjpFMCUhpRSlGgVSzJoFkdAp34Oecx0uHV9lChoBmgJaA9DCPTfg9cuTRbAlIaUUpRoFUsyaBZHQKd9z95yEL91fZQoaAZoCWgPQwhgIAiQoYMVwJSGlFKUaBVLMmgWR0Cnf4Fx4ptrdX2UKGgGaAloD0MIHjUmxFyCEsCUhpRSlGgVSzJoFkdAp39EXrMTvnV9lChoBmgJaA9DCBwmGqTgmRDAlIaUUpRoFUsyaBZHQKd/AaLn9vV1fZQoaAZoCWgPQwieQq7Us6AZwJSGlFKUaBVLMmgWR0CnfsMIu5BkdX2UKGgGaAloD0MI4umVsgzhEsCUhpRSlGgVSzJoFkdAp4CL1ZkkKXV9lChoBmgJaA9DCJIHIos0EQTAlIaUUpRoFUsyaBZHQKeATzgdfb91fZQoaAZoCWgPQwj9FTJXBmUQwJSGlFKUaBVLMmgWR0CngAxfOUt7dX2UKGgGaAloD0MI9fbnoiEjDsCUhpRSlGgVSzJoFkdAp3/NedCmdnV9lChoBmgJaA9DCHicoiO53A3AlIaUUpRoFUsyaBZHQKeBoz9CNS91fZQoaAZoCWgPQwiZgjXOpsMOwJSGlFKUaBVLMmgWR0CngWYlQdjodX2UKGgGaAloD0MIVrd6Tnp/EMCUhpRSlGgVSzJoFkdAp4EkK/mDDnV9lChoBmgJaA9DCBizJasi3ADAlIaUUpRoFUsyaBZHQKeA5WQOnVJ1fZQoaAZoCWgPQwjRXKeRluoMwJSGlFKUaBVLMmgWR0Cngp9/J/5MdX2UKGgGaAloD0MIvjCZKhjVEcCUhpRSlGgVSzJoFkdAp4JiuuA7P3V9lChoBmgJaA9DCHaIf9jSsxDAlIaUUpRoFUsyaBZHQKeCH/2Cdz51fZQoaAZoCWgPQwhX0LTEyngSwJSGlFKUaBVLMmgWR0CngeGL1mJ4dX2UKGgGaAloD0MIrTWU2osYF8CUhpRSlGgVSzJoFkdAp4ObrTpgTnV9lChoBmgJaA9DCLou/OB8mhLAlIaUUpRoFUsyaBZHQKeDXsQ/X5F1fZQoaAZoCWgPQwgV/3dEhYoRwJSGlFKUaBVLMmgWR0CngxvDYRNAdX2UKGgGaAloD0MIz9vY7EjVFsCUhpRSlGgVSzJoFkdAp4LdBSk0rXV9lChoBmgJaA9DCGKE8GjjmBDAlIaUUpRoFUsyaBZHQKeEmLsKLKp1fZQoaAZoCWgPQwiEZAETuNUMwJSGlFKUaBVLMmgWR0CnhFvuPV/ddX2UKGgGaAloD0MIC/Dd5o3TEsCUhpRSlGgVSzJoFkdAp4QZMBZIQXV9lChoBmgJaA9DCET7WMFv4w3AlIaUUpRoFUsyaBZHQKeD2lnAZbZ1fZQoaAZoCWgPQwgxW7Iqwq0SwJSGlFKUaBVLMmgWR0CnhYYU34sVdX2UKGgGaAloD0MIPDCA8KFUEMCUhpRSlGgVSzJoFkdAp4VI+OfdynV9lChoBmgJaA9DCAtfX+tSAxHAlIaUUpRoFUsyaBZHQKeFBhsImgJ1fZQoaAZoCWgPQwi9baZCPHIQwJSGlFKUaBVLMmgWR0CnhMcjiXIEdX2UKGgGaAloD0MIsAER4so5EMCUhpRSlGgVSzJoFkdAp4Z5CngpB3V9lChoBmgJaA9DCDSeCOI83BDAlIaUUpRoFUsyaBZHQKeGO+IuXeF1fZQoaAZoCWgPQwgtXcE24lkQwJSGlFKUaBVLMmgWR0CnhflXJYDDdX2UKGgGaAloD0MILUMc6+JGE8CUhpRSlGgVSzJoFkdAp4W6hvitJXV9lChoBmgJaA9DCPkTlQ1rOhDAlIaUUpRoFUsyaBZHQKeHaQzUI9l1fZQoaAZoCWgPQwg7AOKuXuUFwJSGlFKUaBVLMmgWR0CnhywmVqvedX2UKGgGaAloD0MIflNYqaDiGMCUhpRSlGgVSzJoFkdAp4bpb4agmXV9lChoBmgJaA9DCMSzBBkBpRbAlIaUUpRoFUsyaBZHQKeGqt+1Bt11fZQoaAZoCWgPQwiwjuOHSuMQwJSGlFKUaBVLMmgWR0CniGYZMtbtdX2UKGgGaAloD0MI8rT8wFV+EsCUhpRSlGgVSzJoFkdAp4gpJNCZ4XV9lChoBmgJaA9DCFb0h2ae/A/AlIaUUpRoFUsyaBZHQKeH5mukk8l1fZQoaAZoCWgPQwga+5KNB3sRwJSGlFKUaBVLMmgWR0Cnh6e7+T/ydX2UKGgGaAloD0MI5ueGpuz0E8CUhpRSlGgVSzJoFkdAp4mEtoSL63V9lChoBmgJaA9DCNI5P8Vx8BTAlIaUUpRoFUsyaBZHQKeJR8gIQe51fZQoaAZoCWgPQwgZ5C7CFNURwJSGlFKUaBVLMmgWR0CniQTcRDkVdX2UKGgGaAloD0MI5Gcj1015E8CUhpRSlGgVSzJoFkdAp4jHA9FF2HV9lChoBmgJaA9DCOCAlq5gGw/AlIaUUpRoFUsyaBZHQKeKfORkmQd1fZQoaAZoCWgPQwim0k84u8UVwJSGlFKUaBVLMmgWR0Cnij/wy6+WdX2UKGgGaAloD0MI+FPjpZuECcCUhpRSlGgVSzJoFkdAp4n9Fpfx+nV9lChoBmgJaA9DCJzEILByqBjAlIaUUpRoFUsyaBZHQKeJvjZteld1fZQoaAZoCWgPQwgSiULLuh8MwJSGlFKUaBVLMmgWR0Cni4l3yI56dX2UKGgGaAloD0MIzGCMSBQKE8CUhpRSlGgVSzJoFkdAp4tNQl8gIXV9lChoBmgJaA9DCNu/stKkpBDAlIaUUpRoFUsyaBZHQKeLCm0mdAh1fZQoaAZoCWgPQwg9DK1OzpAXwJSGlFKUaBVLMmgWR0CnisutwJgLdX2UKGgGaAloD0MI1XjpJjEoDcCUhpRSlGgVSzJoFkdAp40AFvAGjnV9lChoBmgJaA9DCIqSkEjbWA7AlIaUUpRoFUsyaBZHQKeMw5imVJN1fZQoaAZoCWgPQwiN74tLVWoQwJSGlFKUaBVLMmgWR0CnjIMqaw2VdX2UKGgGaAloD0MId9Zuu9A8FcCUhpRSlGgVSzJoFkdAp4xEsg+yJXV9lChoBmgJaA9DCCBdbFoppBnAlIaUUpRoFUsyaBZHQKeOjoXbdrR1fZQoaAZoCWgPQwiBJsKGp5cPwJSGlFKUaBVLMmgWR0CnjlJd8iOedX2UKGgGaAloD0MIHTo978bCF8CUhpRSlGgVSzJoFkdAp44QrpaA4HV9lChoBmgJaA9DCKGEmbZ/BRTAlIaUUpRoFUsyaBZHQKeN0mQbMot1fZQoaAZoCWgPQwjE6SRbXY4RwJSGlFKUaBVLMmgWR0CnkK8i4axYdX2UKGgGaAloD0MIwHlx4qvNG8CUhpRSlGgVSzJoFkdAp5B0rCm/FnV9lChoBmgJaA9DCOHra11qtBDAlIaUUpRoFUsyaBZHQKeQMk43m3h1fZQoaAZoCWgPQwjA54cRwkMSwJSGlFKUaBVLMmgWR0Cnj/aM72csdX2UKGgGaAloD0MIt9EA3gIJDMCUhpRSlGgVSzJoFkdAp5JjkbPyCnV9lChoBmgJaA9DCJzgm6bPzg/AlIaUUpRoFUsyaBZHQKeSJ+glF+d1fZQoaAZoCWgPQwgfEr73N3gSwJSGlFKUaBVLMmgWR0CnkeZ88cMmdX2UKGgGaAloD0MIaB8r+G04EMCUhpRSlGgVSzJoFkdAp5Gos9SuQ3V9lChoBmgJaA9DCKtcqPxrmRrAlIaUUpRoFUsyaBZHQKeUW2BreqJ1fZQoaAZoCWgPQwjCvwgaM8kPwJSGlFKUaBVLMmgWR0CnlB+6Ae7udX2UKGgGaAloD0MIDat4I/M4EMCUhpRSlGgVSzJoFkdAp5PeMfigkHV9lChoBmgJaA9DCOGaO/pfHhzAlIaUUpRoFUsyaBZHQKeToalUIcB1fZQoaAZoCWgPQwhQUfUrnU8YwJSGlFKUaBVLMmgWR0CnlnZULlV+dX2UKGgGaAloD0MI22/tREkoGcCUhpRSlGgVSzJoFkdAp5Y6EtdzGXV9lChoBmgJaA9DCB9LH7qg/hbAlIaUUpRoFUsyaBZHQKeV+ExIre91fZQoaAZoCWgPQwjgFFYqqMgRwJSGlFKUaBVLMmgWR0Cnlbsyad+YdX2UKGgGaAloD0MIVaaYg6AjE8CUhpRSlGgVSzJoFkdAp5gJFuvU0HV9lChoBmgJaA9DCMakv5fCAw3AlIaUUpRoFUsyaBZHQKeXzALRa5h1fZQoaAZoCWgPQwiNXaJ6awAMwJSGlFKUaBVLMmgWR0Cnl4kc81XOdX2UKGgGaAloD0MIADs3bcY5EcCUhpRSlGgVSzJoFkdAp5dKkj5bhXV9lChoBmgJaA9DCFuXGqGf6RfAlIaUUpRoFUsyaBZHQKeZDrcj7hx1fZQoaAZoCWgPQwhNv0S8df4ZwJSGlFKUaBVLMmgWR0CnmNGipNsWdX2UKGgGaAloD0MIqfsApDYxC8CUhpRSlGgVSzJoFkdAp5iOp6yB1HV9lChoBmgJaA9DCBpTsMbZ9BXAlIaUUpRoFUsyaBZHQKeYT/RVp9J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}