Five commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.60 +/- 0.66
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b5b00b7dc8dd16afca2a783e7c3dd3126bb6083c9916490ecdcd02e39f80f57
|
3 |
+
size 109672
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -19,55 +21,55 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
-
"_current_progress_remaining": 0.
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 0.9,
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f35f67b84c0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f35f699bd80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 538952,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1684533429431851675,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/rbPxiDvj+gmTg/tHmPP+BwfL1psoM+sm3/v5BCZL/ThxM/cldjP6y12r/aaD6/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuTDIPwjUuj/Esz0/UpSLP0EIQL3/Cxg+MBzav99xTL+7I2o/CBJ4P1qG1L9RcZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+ts/GIO+P6CZOD/JN2Q9tMECvP3lELy0eY8/4HB8vWmygz4WTVI94XiAPMnqFDmybf+/kEJkv9OHEz+kUIs+jT3HPIdy1D1yV2M/rLXav9poPr8IT428B4I2vWRAgLyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 1.7185787 1.4883757 0.72109413]\n [ 1.1209016 -0.06163108 0.25722054]\n [-1.9955351 -0.89164066 0.57629126]\n [ 0.88805306 -1.7086692 -0.7437874 ]]",
|
40 |
+
"desired_goal": "[[ 1.5639869 1.4595957 0.74102426]\n [ 1.0904639 -0.04688287 0.14848326]\n [-1.7039852 -0.79861253 0.9146077 ]\n [ 0.96902514 -1.6603501 -1.2456456 ]]",
|
41 |
+
"observation": "[[ 1.7185787e+00 1.4883757e+00 7.2109413e-01 5.5717263e-02\n -7.9807527e-03 -8.8438960e-03]\n [ 1.1209016e+00 -6.1631083e-02 2.5722054e-01 5.1343046e-02\n 1.5682640e-02 1.4201844e-04]\n [-1.9955351e+00 -8.9164066e-01 5.7629126e-01 2.7209961e-01\n 2.4321342e-02 1.0373407e-01]\n [ 8.8805306e-01 -1.7086692e+00 -7.4378741e-01 -1.7249599e-02\n -4.4557597e-02 -1.5655704e-02]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYhWwvPMO0bwsLE89O5XEPOjnHb1RwJg+3ktivSI9oD1u1zQ+3cURPYDw6r0Kjo4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.02149457 -0.02551982 0.05057923]\n [ 0.02399694 -0.03855124 0.29834226]\n [-0.05524813 0.0782416 0.17660305]\n [ 0.03558909 -0.11471653 0.27842742]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.461056,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISWdg5GXN9b+UhpRSlIwBbJRLMowBdJRHQJ3EGnO0LMN1fZQoaAZoCWgPQwi4rS08L9Xxv5SGlFKUaBVLMmgWR0Cdw5ihWYF8dX2UKGgGaAloD0MIm3PwTGiS7r+UhpRSlGgVSzJoFkdAncMSUornT3V9lChoBmgJaA9DCETAIVSpWfi/lIaUUpRoFUsyaBZHQJ3CjW7OE/V1fZQoaAZoCWgPQwgXnSy13m/wv5SGlFKUaBVLMmgWR0CdxmhdMTN/dX2UKGgGaAloD0MInIaowp9h8L+UhpRSlGgVSzJoFkdAncXmelKsdXV9lChoBmgJaA9DCCtoWmJltPW/lIaUUpRoFUsyaBZHQJ3FX/jsD4h1fZQoaAZoCWgPQwhz9zk+WjwBwJSGlFKUaBVLMmgWR0CdxNrtmcvvdX2UKGgGaAloD0MIXjC45o5+9b+UhpRSlGgVSzJoFkdAnci8Oby6MHV9lChoBmgJaA9DCAA6zJcX4OG/lIaUUpRoFUsyaBZHQJ3IOm1pj+d1fZQoaAZoCWgPQwgw8rImFvjzv5SGlFKUaBVLMmgWR0Cdx7QTEit8dX2UKGgGaAloD0MIYJFfP8QG97+UhpRSlGgVSzJoFkdAnccvNzKcNHV9lChoBmgJaA9DCPJ376gx4fK/lIaUUpRoFUsyaBZHQJ3LNFWn0kJ1fZQoaAZoCWgPQwhdixagbbXgv5SGlFKUaBVLMmgWR0CdyrKiwjdIdX2UKGgGaAloD0MI4nMn2H+d0L+UhpRSlGgVSzJoFkdAncoscZLqU3V9lChoBmgJaA9DCOKS407poPi/lIaUUpRoFUsyaBZHQJ3Jp19v0iB1fZQoaAZoCWgPQwiUTE7tDFPwv5SGlFKUaBVLMmgWR0CdzYp/PPcBdX2UKGgGaAloD0MInZ53Y0Fh8r+UhpRSlGgVSzJoFkdAnc0Iouwos3V9lChoBmgJaA9DCA9/TdaoR/K/lIaUUpRoFUsyaBZHQJ3MgnRb8m91fZQoaAZoCWgPQwjaG3xhMlXkv5SGlFKUaBVLMmgWR0Cdy/2K2rn1dX2UKGgGaAloD0MImWa610m9/7+UhpRSlGgVSzJoFkdAnc/mqgh8pnV9lChoBmgJaA9DCNcTXRd+8ALAlIaUUpRoFUsyaBZHQJ3PZPM0P6N1fZQoaAZoCWgPQwiJDKt4I3Ppv5SGlFKUaBVLMmgWR0Cdzt8KohpydX2UKGgGaAloD0MIO2743XRL77+UhpRSlGgVSzJoFkdAnc5ZmRNh3XV9lChoBmgJaA9DCFd2weCaO+a/lIaUUpRoFUsyaBZHQJ3SXHim2st1fZQoaAZoCWgPQwid2EP7WMHpv5SGlFKUaBVLMmgWR0Cd0drYGt6pdX2UKGgGaAloD0MIGmoUksxq5L+UhpRSlGgVSzJoFkdAndFUmplz2nV9lChoBmgJaA9DCH78pUV9UvW/lIaUUpRoFUsyaBZHQJ3Qz7P6bfB1fZQoaAZoCWgPQwijrrX3qSrtv5SGlFKUaBVLMmgWR0Cd1LDu0CzUdX2UKGgGaAloD0MIn1p9dVUg6r+UhpRSlGgVSzJoFkdAndQvKZDzAnV9lChoBmgJaA9DCBAhrpy9c/S/lIaUUpRoFUsyaBZHQJ3TqPaL4vh1fZQoaAZoCWgPQwhnYroQq7/zv5SGlFKUaBVLMmgWR0Cd0yQBPsRhdX2UKGgGaAloD0MIsvZ3tkdv8L+UhpRSlGgVSzJoFkdAndcjy8SPEXV9lChoBmgJaA9DCOP8TShEQOy/lIaUUpRoFUsyaBZHQJ3WopkPMB91fZQoaAZoCWgPQwirlJ7pJcYCwJSGlFKUaBVLMmgWR0Cd1hwpON5udX2UKGgGaAloD0MIyZHOwMhL97+UhpRSlGgVSzJoFkdAndWW65Gz8nV9lChoBmgJaA9DCDI7i96pgOy/lIaUUpRoFUsyaBZHQJ3ZjfQ8fV91fZQoaAZoCWgPQwjlZOJWQQzXv5SGlFKUaBVLMmgWR0Cd2Qw7DEWJdX2UKGgGaAloD0MI3jr/dtkv67+UhpRSlGgVSzJoFkdAndiGD+R5knV9lChoBmgJaA9DCKlKW1zjs+i/lIaUUpRoFUsyaBZHQJ3YAWweNkx1fZQoaAZoCWgPQwjtvI3NjtTnv5SGlFKUaBVLMmgWR0Cd2+szl90BdX2UKGgGaAloD0MI+z2xTpVv6b+UhpRSlGgVSzJoFkdAndtpZbILgHV9lChoBmgJaA9DCBu5bkp5rdS/lIaUUpRoFUsyaBZHQJ3a4wUQCjl1fZQoaAZoCWgPQwjXprG9FrT9v5SGlFKUaBVLMmgWR0Cd2l4Cp3otdX2UKGgGaAloD0MI4zWv6qwW6b+UhpRSlGgVSzJoFkdAnd5cdT5wfnV9lChoBmgJaA9DCDs42JsYkgDAlIaUUpRoFUsyaBZHQJ3d2piqhlF1fZQoaAZoCWgPQwiuEcE4uLT7v5SGlFKUaBVLMmgWR0Cd3VRmbsnidX2UKGgGaAloD0MIGhcOhGQhCMCUhpRSlGgVSzJoFkdAndzPtIClrXV9lChoBmgJaA9DCP8gkiHH1u2/lIaUUpRoFUsyaBZHQJ3gxB9kSVZ1fZQoaAZoCWgPQwhRS3MrhNXkv5SGlFKUaBVLMmgWR0Cd4EMzuWrwdX2UKGgGaAloD0MI0CozpfV38r+UhpRSlGgVSzJoFkdAnd+9ZRsMzHV9lChoBmgJaA9DCOup1VdXBeG/lIaUUpRoFUsyaBZHQJ3fOMR6F/R1fZQoaAZoCWgPQwiK48Cr5Y7wv5SGlFKUaBVLMmgWR0Cd5KIi1RcedX2UKGgGaAloD0MIfjoeM1DZ+b+UhpRSlGgVSzJoFkdAneQiKaXrt3V9lChoBmgJaA9DCHUfgNQmDv6/lIaUUpRoFUsyaBZHQJ3jnhCMPz51fZQoaAZoCWgPQwjswg/Op075v5SGlFKUaBVLMmgWR0Cd4xsQd0aIdX2UKGgGaAloD0MIt7bwvFQs8b+UhpRSlGgVSzJoFkdAneh3Heaa1HV9lChoBmgJaA9DCG1y+KQTifC/lIaUUpRoFUsyaBZHQJ3n+RW912d1fZQoaAZoCWgPQwi4lPPF3ovfv5SGlFKUaBVLMmgWR0Cd53TzND+jdX2UKGgGaAloD0MIJqjhW1i367+UhpRSlGgVSzJoFkdAnebx+F10T3V9lChoBmgJaA9DCIJXy52ZoP2/lIaUUpRoFUsyaBZHQJ3sXX4CZF51fZQoaAZoCWgPQwhX6INlbOj7v5SGlFKUaBVLMmgWR0Cd692alUIcdX2UKGgGaAloD0MIYcQ+ARSj5b+UhpRSlGgVSzJoFkdAnetZJTVDr3V9lChoBmgJaA9DCOnUlc/yvO6/lIaUUpRoFUsyaBZHQJ3q1pblijN1fZQoaAZoCWgPQwiEEJAvoQLyv5SGlFKUaBVLMmgWR0Cd8KDEm6XjdX2UKGgGaAloD0MI/gsEATJ03r+UhpRSlGgVSzJoFkdAnfAhfjS5RXV9lChoBmgJaA9DCKsGYW738uG/lIaUUpRoFUsyaBZHQJ3vnVZs9B91fZQoaAZoCWgPQwjk1w+xwUIFwJSGlFKUaBVLMmgWR0Cd7xpHI6sAdX2UKGgGaAloD0MIYOXQItv58r+UhpRSlGgVSzJoFkdAnfT3JHRTj3V9lChoBmgJaA9DCNffEoB/Cv2/lIaUUpRoFUsyaBZHQJ30eOMl1KZ1fZQoaAZoCWgPQwhjt88qM2X8v5SGlFKUaBVLMmgWR0Cd8/UeuFHsdX2UKGgGaAloD0MIdjdPdciN+7+UhpRSlGgVSzJoFkdAnfNyRwIdEXV9lChoBmgJaA9DCI/ecB+5lQPAlIaUUpRoFUsyaBZHQJ35d5D7ZWd1fZQoaAZoCWgPQwj8j0yHTk/6v5SGlFKUaBVLMmgWR0Cd+PbRWtEHdX2UKGgGaAloD0MItvXTf9YcAcCUhpRSlGgVSzJoFkdAnfhyWzF+/nV9lChoBmgJaA9DCI9TdCSXf/i/lIaUUpRoFUsyaBZHQJ3377+DOC51fZQoaAZoCWgPQwglrfiGwmfSv5SGlFKUaBVLMmgWR0Cd/IVd5Y5ldX2UKGgGaAloD0MIjiEAOPbsBcCUhpRSlGgVSzJoFkdAnfwDyWiUPnV9lChoBmgJaA9DCCRFZFjFm/a/lIaUUpRoFUsyaBZHQJ37fPa+N991fZQoaAZoCWgPQwg3qWis/R0FwJSGlFKUaBVLMmgWR0Cd+vgNPP9ldX2UKGgGaAloD0MIzVfJx+7CAMCUhpRSlGgVSzJoFkdAnf8AEU0vXnV9lChoBmgJaA9DCOUrgZTYNeC/lIaUUpRoFUsyaBZHQJ3+fi97F851fZQoaAZoCWgPQwgCYhIu5FHwv5SGlFKUaBVLMmgWR0Cd/fd7v5P/dX2UKGgGaAloD0MIp60RwTg49L+UhpRSlGgVSzJoFkdAnf1y0F8ohXV9lChoBmgJaA9DCAR1yqMbIf2/lIaUUpRoFUsyaBZHQJ4BSv0RODd1fZQoaAZoCWgPQwgiT5Kumfzvv5SGlFKUaBVLMmgWR0CeAMnMMZxadX2UKGgGaAloD0MIvcPt0LCY/L+UhpRSlGgVSzJoFkdAngBE8aGYbHV9lChoBmgJaA9DCBXJVwIp8fm/lIaUUpRoFUsyaBZHQJ3/wa4tpVV1fZQoaAZoCWgPQwhTBDi9i/fzv5SGlFKUaBVLMmgWR0CeA5SydFvydX2UKGgGaAloD0MIfXcrS3QW8b+UhpRSlGgVSzJoFkdAngMSzkZJkHV9lChoBmgJaA9DCDBHj9/bdPu/lIaUUpRoFUsyaBZHQJ4CjGxUvPF1fZQoaAZoCWgPQwh2cRsN4G32v5SGlFKUaBVLMmgWR0CeAgdxyXD4dX2UKGgGaAloD0MImBb1Se6w/7+UhpRSlGgVSzJoFkdAngX++dsi0XV9lChoBmgJaA9DCI20VN6OsPe/lIaUUpRoFUsyaBZHQJ4FfjU/fO51fZQoaAZoCWgPQwgkXp7OFSX2v5SGlFKUaBVLMmgWR0CeBPk8RtgsdX2UKGgGaAloD0MIDmd+NQcI77+UhpRSlGgVSzJoFkdAngR1UlzEJnV9lChoBmgJaA9DCKn7AKQ28fC/lIaUUpRoFUsyaBZHQJ4IWfg75mB1fZQoaAZoCWgPQwiJmujzUcbzv5SGlFKUaBVLMmgWR0CeB9gg5imVdX2UKGgGaAloD0MI8wGBzqTNBMCUhpRSlGgVSzJoFkdAngdR1oxpL3V9lChoBmgJaA9DCAK7mjxldfm/lIaUUpRoFUsyaBZHQJ4GzPrv9cd1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 16842,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37aff6c9e890c7372329c54382aefdc5cfdf6635757a682b09a4c23f50546a15
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13740c9cacc5dacd4355e201dda4d843b8ef89248f6e6e28ca4db0ab6b65dfd7
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f90dbece710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f90dbed97c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684526872912871650, "learning_rate": 0.0008, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo1h0P1nZVT7TR8m/oDiGP0l0pb2f5ae+eeENv9rLBD8oWiw+begrv5RfBD/V8te/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]]", "desired_goal": "[[ 0.9544775 0.20883693 -1.5725044 ]\n [ 1.048603 -0.0807882 -0.32792374]\n [-0.5542217 0.5187355 0.16831267]\n [-0.6715153 0.5170834 -1.6870981 ]]", "observation": "[[ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVWiYPStNvT2yGF8+/28JvvWcnj08CVQ9xZoFvhgeO7y00B4855Xwvb4Zzj3Lbro6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07441775 0.09243234 0.21786764]\n [-0.1342163 0.07744781 0.05176662]\n [-0.13047321 -0.01142075 0.00969331]\n [-0.11747342 0.10063504 0.00142237]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0J5H0dbI8CUhpRSlIwBbJRLMowBdJRHQKb0vx1gYxd1fZQoaAZoCWgPQwgVONkG7lAjwJSGlFKUaBVLMmgWR0Cm9IHpjc2zdX2UKGgGaAloD0MIcaq1MAtVIsCUhpRSlGgVSzJoFkdApvREgOjIrHV9lChoBmgJaA9DCAwEATJ0VCHAlIaUUpRoFUsyaBZHQKb0Avnr6cl1fZQoaAZoCWgPQwgM5q+QudIiwJSGlFKUaBVLMmgWR0Cm9a8ebNKRdX2UKGgGaAloD0MIxLEubqPZIcCUhpRSlGgVSzJoFkdApvVx6By0bHV9lChoBmgJaA9DCMmRzsDIGyXAlIaUUpRoFUsyaBZHQKb1NFPSDyx1fZQoaAZoCWgPQwh96lil9HwiwJSGlFKUaBVLMmgWR0Cm9PPBSDRMdX2UKGgGaAloD0MI7Ggc6nctM8CUhpRSlGgVSzJoFkdApvayHj6vaHV9lChoBmgJaA9DCM6o+Sr5TDPAlIaUUpRoFUsyaBZHQKb2dPqLS/l1fZQoaAZoCWgPQwiR1ELJ5JwmwJSGlFKUaBVLMmgWR0Cm9jepfhMrdX2UKGgGaAloD0MIP5C8cyi7IsCUhpRSlGgVSzJoFkdApvX2HxjJ+3V9lChoBmgJaA9DCMlWl1MCLjzAlIaUUpRoFUsyaBZHQKb3rlYlpoN1fZQoaAZoCWgPQwht/fSfNZ8iwJSGlFKUaBVLMmgWR0Cm93DUVi4KdX2UKGgGaAloD0MIieyDLAt+IsCUhpRSlGgVSzJoFkdApvczgflp5HV9lChoBmgJaA9DCHY1ecpqMiDAlIaUUpRoFUsyaBZHQKb28oE0SAZ1fZQoaAZoCWgPQwgmGw+22HUkwJSGlFKUaBVLMmgWR0Cm+JADRtxddX2UKGgGaAloD0MIv7hUpS1uIcCUhpRSlGgVSzJoFkdApvhSd8RcvHV9lChoBmgJaA9DCMh8QKAzuSLAlIaUUpRoFUsyaBZHQKb4FL/S6Ud1fZQoaAZoCWgPQwiWICOgwgEiwJSGlFKUaBVLMmgWR0Cm99NKyv9tdX2UKGgGaAloD0MIdAtdiUBdIcCUhpRSlGgVSzJoFkdApvmBKnNxEXV9lChoBmgJaA9DCCum0k84iyjAlIaUUpRoFUsyaBZHQKb5Q6y0KJF1fZQoaAZoCWgPQwisyVNW000kwJSGlFKUaBVLMmgWR0Cm+QYGD+R6dX2UKGgGaAloD0MItFiK5CtxJMCUhpRSlGgVSzJoFkdApvjEwFkhBHV9lChoBmgJaA9DCDEJF/IIXiTAlIaUUpRoFUsyaBZHQKb6cb9ZRsN1fZQoaAZoCWgPQwi2heelYsMfwJSGlFKUaBVLMmgWR0Cm+jS2phnbdX2UKGgGaAloD0MIWDuKc9SpIMCUhpRSlGgVSzJoFkdApvn3VXmvGXV9lChoBmgJaA9DCNxHbk26HSTAlIaUUpRoFUsyaBZHQKb5tfoA4n51fZQoaAZoCWgPQwjCFVCopwcjwJSGlFKUaBVLMmgWR0Cm+2dbPhQ4dX2UKGgGaAloD0MIkxgEVg4NIsCUhpRSlGgVSzJoFkdApvsqCrcTJ3V9lChoBmgJaA9DCHMrhNVYUiHAlIaUUpRoFUsyaBZHQKb67HcUM5R1fZQoaAZoCWgPQwjOHJJaKDkgwJSGlFKUaBVLMmgWR0Cm+qtwzch1dX2UKGgGaAloD0MIQj7o2axqJsCUhpRSlGgVSzJoFkdApvxYiNbTt3V9lChoBmgJaA9DCE4LXvQVpCPAlIaUUpRoFUsyaBZHQKb8G5lvqC91fZQoaAZoCWgPQwh41JgQc7kewJSGlFKUaBVLMmgWR0Cm+93trsSkdX2UKGgGaAloD0MIf0xr09g+HcCUhpRSlGgVSzJoFkdApvucZJkGzXV9lChoBmgJaA9DCJ+RCI1gQyPAlIaUUpRoFUsyaBZHQKb9Tddmg8N1fZQoaAZoCWgPQwgkK78MxpArwJSGlFKUaBVLMmgWR0Cm/RCyY5T7dX2UKGgGaAloD0MIO6jEdYz7HMCUhpRSlGgVSzJoFkdApvzS/Zdv9HV9lChoBmgJaA9DCCOjA5KwbyHAlIaUUpRoFUsyaBZHQKb8kXwb2lF1fZQoaAZoCWgPQwgiHLPsSTgjwJSGlFKUaBVLMmgWR0Cm/jIZZSvUdX2UKGgGaAloD0MIij4fZcSlGMCUhpRSlGgVSzJoFkdApv31SqEOAnV9lChoBmgJaA9DCK+UZYhjXRvAlIaUUpRoFUsyaBZHQKb9t6guh9N1fZQoaAZoCWgPQwheLuI7MfsdwJSGlFKUaBVLMmgWR0Cm/XZEc81XdX2UKGgGaAloD0MIFOtU+Z7xGsCUhpRSlGgVSzJoFkdApv8g+OfdynV9lChoBmgJaA9DCL9+iA0WFiDAlIaUUpRoFUsyaBZHQKb+44FRpDh1fZQoaAZoCWgPQwhnKVlOQrkcwJSGlFKUaBVLMmgWR0Cm/qXrD63zdX2UKGgGaAloD0MII/WeymmvGcCUhpRSlGgVSzJoFkdApv5kz41xbXV9lChoBmgJaA9DCO84RUdyGSLAlIaUUpRoFUsyaBZHQKcACpvP1L91fZQoaAZoCWgPQwgF4J9SJWIgwJSGlFKUaBVLMmgWR0Cm/80NayKOdX2UKGgGaAloD0MIh/4JLlbEI8CUhpRSlGgVSzJoFkdApv+PWattAXV9lChoBmgJaA9DCIarAyDumh7AlIaUUpRoFUsyaBZHQKb/Tda+vhZ1fZQoaAZoCWgPQwjXoZqSrBsjwJSGlFKUaBVLMmgWR0CnAOxGUfPpdX2UKGgGaAloD0MId4GSAgvYJcCUhpRSlGgVSzJoFkdApwCuvjfelHV9lChoBmgJaA9DCChFK/cCcyLAlIaUUpRoFUsyaBZHQKcAcQ5myxB1fZQoaAZoCWgPQwhS81XysRsdwJSGlFKUaBVLMmgWR0CnAC+NkvsadX2UKGgGaAloD0MIO6sF9pjYIcCUhpRSlGgVSzJoFkdApwHiPp6hQHV9lChoBmgJaA9DCI0LB0KySCLAlIaUUpRoFUsyaBZHQKcBpM6BAfN1fZQoaAZoCWgPQwikUuxoHFocwJSGlFKUaBVLMmgWR0CnAWcbrC3xdX2UKGgGaAloD0MI+1qXGqEfJ8CUhpRSlGgVSzJoFkdApwElqJuVHHV9lChoBmgJaA9DCNejcD0K1yPAlIaUUpRoFUsyaBZHQKcCyE8q4H51fZQoaAZoCWgPQwjXpNsSuUggwJSGlFKUaBVLMmgWR0CnAorBj4HpdX2UKGgGaAloD0MIcM0d/S9nG8CUhpRSlGgVSzJoFkdApwJNBD5TInV9lChoBmgJaA9DCKj/rPnxtyDAlIaUUpRoFUsyaBZHQKcCC3kPtlZ1fZQoaAZoCWgPQwitUKT7OfUcwJSGlFKUaBVLMmgWR0CnA7dXDFZQdX2UKGgGaAloD0MIBYnt7gE6IcCUhpRSlGgVSzJoFkdApwN504iosXV9lChoBmgJaA9DCGozTkNUsSDAlIaUUpRoFUsyaBZHQKcDPCgK4QV1fZQoaAZoCWgPQwihR4yeW0ghwJSGlFKUaBVLMmgWR0CnAvqVII4VdX2UKGgGaAloD0MIyorh6gAcNsCUhpRSlGgVSzJoFkdApwSp4dIXj3V9lChoBmgJaA9DCLA9syRABSXAlIaUUpRoFUsyaBZHQKcEbJcPe551fZQoaAZoCWgPQwjqJcYy/eohwJSGlFKUaBVLMmgWR0CnBC7mEGqxdX2UKGgGaAloD0MI7gp9sIydHMCUhpRSlGgVSzJoFkdApwPuNo8IRnV9lChoBmgJaA9DCGSV0jO9FB3AlIaUUpRoFUsyaBZHQKcFlvgm7at1fZQoaAZoCWgPQwgM5xpmaLQlwJSGlFKUaBVLMmgWR0CnBVmOuJUHdX2UKGgGaAloD0MI3UWYolwyIMCUhpRSlGgVSzJoFkdApwUb8R+SbHV9lChoBmgJaA9DCDjcR25NAiLAlIaUUpRoFUsyaBZHQKcE2oa1kUd1fZQoaAZoCWgPQwhKYd7jTOMewJSGlFKUaBVLMmgWR0CnBodX9zfadX2UKGgGaAloD0MIIXam0HktHMCUhpRSlGgVSzJoFkdApwZJ3iaRZHV9lChoBmgJaA9DCMf2WtB74xvAlIaUUpRoFUsyaBZHQKcGDDtw71Z1fZQoaAZoCWgPQwgOayqLwhI4wJSGlFKUaBVLMmgWR0CnBcsolUqAdX2UKGgGaAloD0MIu5f75CjQHsCUhpRSlGgVSzJoFkdApwdspAlfJHV9lChoBmgJaA9DCF3dsdgmPSbAlIaUUpRoFUsyaBZHQKcHLyfcvdx1fZQoaAZoCWgPQwiwWMNF7rkpwJSGlFKUaBVLMmgWR0CnBvHZTQ3QdX2UKGgGaAloD0MI1qnyPSPJIcCUhpRSlGgVSzJoFkdApwawt+TePHV9lChoBmgJaA9DCJVGzOzz8CTAlIaUUpRoFUsyaBZHQKcI5V2A5Jd1fZQoaAZoCWgPQwhR+dfyyp0kwJSGlFKUaBVLMmgWR0CnCKog/1QJdX2UKGgGaAloD0MI3J4gsd31IcCUhpRSlGgVSzJoFkdApwhs/Y8MeHV9lChoBmgJaA9DCImYEkn0NjHAlIaUUpRoFUsyaBZHQKcILA6dUbV1fZQoaAZoCWgPQwh88UV7vJAbwJSGlFKUaBVLMmgWR0CnCniNKh+OdX2UKGgGaAloD0MIvRjKiXblIMCUhpRSlGgVSzJoFkdApwo7r/sE7nV9lChoBmgJaA9DCCC4yhMIlzDAlIaUUpRoFUsyaBZHQKcJ/whGH591fZQoaAZoCWgPQwh4nKIjuTwkwJSGlFKUaBVLMmgWR0CnCb4EnssydX2UKGgGaAloD0MIHZHvUuoKJ8CUhpRSlGgVSzJoFkdApwv5NGmUGHV9lChoBmgJaA9DCKtdE9Iawx7AlIaUUpRoFUsyaBZHQKcLvFl05lx1fZQoaAZoCWgPQwh39pUH6VElwJSGlFKUaBVLMmgWR0CnC3881XNkdX2UKGgGaAloD0MIEVSNXg2wIsCUhpRSlGgVSzJoFkdApws+YfGMoHV9lChoBmgJaA9DCKn1fqMdJyfAlIaUUpRoFUsyaBZHQKcN+VLSNOx1fZQoaAZoCWgPQwjXicvxCiQjwJSGlFKUaBVLMmgWR0CnDb2EK3NLdX2UKGgGaAloD0MIA0AVN24hIsCUhpRSlGgVSzJoFkdApw2AixFAmnV9lChoBmgJaA9DCD9xAP2+Nz3AlIaUUpRoFUsyaBZHQKcNQD0UXYV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f35f67b84c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f35f699bd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 538952, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684533429431851675, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/rbPxiDvj+gmTg/tHmPP+BwfL1psoM+sm3/v5BCZL/ThxM/cldjP6y12r/aaD6/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuTDIPwjUuj/Esz0/UpSLP0EIQL3/Cxg+MBzav99xTL+7I2o/CBJ4P1qG1L9RcZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+ts/GIO+P6CZOD/JN2Q9tMECvP3lELy0eY8/4HB8vWmygz4WTVI94XiAPMnqFDmybf+/kEJkv9OHEz+kUIs+jT3HPIdy1D1yV2M/rLXav9poPr8IT428B4I2vWRAgLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.7185787 1.4883757 0.72109413]\n [ 1.1209016 -0.06163108 0.25722054]\n [-1.9955351 -0.89164066 0.57629126]\n [ 0.88805306 -1.7086692 -0.7437874 ]]", "desired_goal": "[[ 1.5639869 1.4595957 0.74102426]\n [ 1.0904639 -0.04688287 0.14848326]\n [-1.7039852 -0.79861253 0.9146077 ]\n [ 0.96902514 -1.6603501 -1.2456456 ]]", "observation": "[[ 1.7185787e+00 1.4883757e+00 7.2109413e-01 5.5717263e-02\n -7.9807527e-03 -8.8438960e-03]\n [ 1.1209016e+00 -6.1631083e-02 2.5722054e-01 5.1343046e-02\n 1.5682640e-02 1.4201844e-04]\n [-1.9955351e+00 -8.9164066e-01 5.7629126e-01 2.7209961e-01\n 2.4321342e-02 1.0373407e-01]\n [ 8.8805306e-01 -1.7086692e+00 -7.4378741e-01 -1.7249599e-02\n -4.4557597e-02 -1.5655704e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYhWwvPMO0bwsLE89O5XEPOjnHb1RwJg+3ktivSI9oD1u1zQ+3cURPYDw6r0Kjo4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02149457 -0.02551982 0.05057923]\n [ 0.02399694 -0.03855124 0.29834226]\n [-0.05524813 0.0782416 0.17660305]\n [ 0.03558909 -0.11471653 0.27842742]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.461056, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISWdg5GXN9b+UhpRSlIwBbJRLMowBdJRHQJ3EGnO0LMN1fZQoaAZoCWgPQwi4rS08L9Xxv5SGlFKUaBVLMmgWR0Cdw5ihWYF8dX2UKGgGaAloD0MIm3PwTGiS7r+UhpRSlGgVSzJoFkdAncMSUornT3V9lChoBmgJaA9DCETAIVSpWfi/lIaUUpRoFUsyaBZHQJ3CjW7OE/V1fZQoaAZoCWgPQwgXnSy13m/wv5SGlFKUaBVLMmgWR0CdxmhdMTN/dX2UKGgGaAloD0MInIaowp9h8L+UhpRSlGgVSzJoFkdAncXmelKsdXV9lChoBmgJaA9DCCtoWmJltPW/lIaUUpRoFUsyaBZHQJ3FX/jsD4h1fZQoaAZoCWgPQwhz9zk+WjwBwJSGlFKUaBVLMmgWR0CdxNrtmcvvdX2UKGgGaAloD0MIXjC45o5+9b+UhpRSlGgVSzJoFkdAnci8Oby6MHV9lChoBmgJaA9DCAA6zJcX4OG/lIaUUpRoFUsyaBZHQJ3IOm1pj+d1fZQoaAZoCWgPQwgw8rImFvjzv5SGlFKUaBVLMmgWR0Cdx7QTEit8dX2UKGgGaAloD0MIYJFfP8QG97+UhpRSlGgVSzJoFkdAnccvNzKcNHV9lChoBmgJaA9DCPJ376gx4fK/lIaUUpRoFUsyaBZHQJ3LNFWn0kJ1fZQoaAZoCWgPQwhdixagbbXgv5SGlFKUaBVLMmgWR0CdyrKiwjdIdX2UKGgGaAloD0MI4nMn2H+d0L+UhpRSlGgVSzJoFkdAncoscZLqU3V9lChoBmgJaA9DCOKS407poPi/lIaUUpRoFUsyaBZHQJ3Jp19v0iB1fZQoaAZoCWgPQwiUTE7tDFPwv5SGlFKUaBVLMmgWR0CdzYp/PPcBdX2UKGgGaAloD0MInZ53Y0Fh8r+UhpRSlGgVSzJoFkdAnc0Iouwos3V9lChoBmgJaA9DCA9/TdaoR/K/lIaUUpRoFUsyaBZHQJ3MgnRb8m91fZQoaAZoCWgPQwjaG3xhMlXkv5SGlFKUaBVLMmgWR0Cdy/2K2rn1dX2UKGgGaAloD0MImWa610m9/7+UhpRSlGgVSzJoFkdAnc/mqgh8pnV9lChoBmgJaA9DCNcTXRd+8ALAlIaUUpRoFUsyaBZHQJ3PZPM0P6N1fZQoaAZoCWgPQwiJDKt4I3Ppv5SGlFKUaBVLMmgWR0Cdzt8KohpydX2UKGgGaAloD0MIO2743XRL77+UhpRSlGgVSzJoFkdAnc5ZmRNh3XV9lChoBmgJaA9DCFd2weCaO+a/lIaUUpRoFUsyaBZHQJ3SXHim2st1fZQoaAZoCWgPQwid2EP7WMHpv5SGlFKUaBVLMmgWR0Cd0drYGt6pdX2UKGgGaAloD0MIGmoUksxq5L+UhpRSlGgVSzJoFkdAndFUmplz2nV9lChoBmgJaA9DCH78pUV9UvW/lIaUUpRoFUsyaBZHQJ3Qz7P6bfB1fZQoaAZoCWgPQwijrrX3qSrtv5SGlFKUaBVLMmgWR0Cd1LDu0CzUdX2UKGgGaAloD0MIn1p9dVUg6r+UhpRSlGgVSzJoFkdAndQvKZDzAnV9lChoBmgJaA9DCBAhrpy9c/S/lIaUUpRoFUsyaBZHQJ3TqPaL4vh1fZQoaAZoCWgPQwhnYroQq7/zv5SGlFKUaBVLMmgWR0Cd0yQBPsRhdX2UKGgGaAloD0MIsvZ3tkdv8L+UhpRSlGgVSzJoFkdAndcjy8SPEXV9lChoBmgJaA9DCOP8TShEQOy/lIaUUpRoFUsyaBZHQJ3WopkPMB91fZQoaAZoCWgPQwirlJ7pJcYCwJSGlFKUaBVLMmgWR0Cd1hwpON5udX2UKGgGaAloD0MIyZHOwMhL97+UhpRSlGgVSzJoFkdAndWW65Gz8nV9lChoBmgJaA9DCDI7i96pgOy/lIaUUpRoFUsyaBZHQJ3ZjfQ8fV91fZQoaAZoCWgPQwjlZOJWQQzXv5SGlFKUaBVLMmgWR0Cd2Qw7DEWJdX2UKGgGaAloD0MI3jr/dtkv67+UhpRSlGgVSzJoFkdAndiGD+R5knV9lChoBmgJaA9DCKlKW1zjs+i/lIaUUpRoFUsyaBZHQJ3YAWweNkx1fZQoaAZoCWgPQwjtvI3NjtTnv5SGlFKUaBVLMmgWR0Cd2+szl90BdX2UKGgGaAloD0MI+z2xTpVv6b+UhpRSlGgVSzJoFkdAndtpZbILgHV9lChoBmgJaA9DCBu5bkp5rdS/lIaUUpRoFUsyaBZHQJ3a4wUQCjl1fZQoaAZoCWgPQwjXprG9FrT9v5SGlFKUaBVLMmgWR0Cd2l4Cp3otdX2UKGgGaAloD0MI4zWv6qwW6b+UhpRSlGgVSzJoFkdAnd5cdT5wfnV9lChoBmgJaA9DCDs42JsYkgDAlIaUUpRoFUsyaBZHQJ3d2piqhlF1fZQoaAZoCWgPQwiuEcE4uLT7v5SGlFKUaBVLMmgWR0Cd3VRmbsnidX2UKGgGaAloD0MIGhcOhGQhCMCUhpRSlGgVSzJoFkdAndzPtIClrXV9lChoBmgJaA9DCP8gkiHH1u2/lIaUUpRoFUsyaBZHQJ3gxB9kSVZ1fZQoaAZoCWgPQwhRS3MrhNXkv5SGlFKUaBVLMmgWR0Cd4EMzuWrwdX2UKGgGaAloD0MI0CozpfV38r+UhpRSlGgVSzJoFkdAnd+9ZRsMzHV9lChoBmgJaA9DCOup1VdXBeG/lIaUUpRoFUsyaBZHQJ3fOMR6F/R1fZQoaAZoCWgPQwiK48Cr5Y7wv5SGlFKUaBVLMmgWR0Cd5KIi1RcedX2UKGgGaAloD0MIfjoeM1DZ+b+UhpRSlGgVSzJoFkdAneQiKaXrt3V9lChoBmgJaA9DCHUfgNQmDv6/lIaUUpRoFUsyaBZHQJ3jnhCMPz51fZQoaAZoCWgPQwjswg/Op075v5SGlFKUaBVLMmgWR0Cd4xsQd0aIdX2UKGgGaAloD0MIt7bwvFQs8b+UhpRSlGgVSzJoFkdAneh3Heaa1HV9lChoBmgJaA9DCG1y+KQTifC/lIaUUpRoFUsyaBZHQJ3n+RW912d1fZQoaAZoCWgPQwi4lPPF3ovfv5SGlFKUaBVLMmgWR0Cd53TzND+jdX2UKGgGaAloD0MIJqjhW1i367+UhpRSlGgVSzJoFkdAnebx+F10T3V9lChoBmgJaA9DCIJXy52ZoP2/lIaUUpRoFUsyaBZHQJ3sXX4CZF51fZQoaAZoCWgPQwhX6INlbOj7v5SGlFKUaBVLMmgWR0Cd692alUIcdX2UKGgGaAloD0MIYcQ+ARSj5b+UhpRSlGgVSzJoFkdAnetZJTVDr3V9lChoBmgJaA9DCOnUlc/yvO6/lIaUUpRoFUsyaBZHQJ3q1pblijN1fZQoaAZoCWgPQwiEEJAvoQLyv5SGlFKUaBVLMmgWR0Cd8KDEm6XjdX2UKGgGaAloD0MI/gsEATJ03r+UhpRSlGgVSzJoFkdAnfAhfjS5RXV9lChoBmgJaA9DCKsGYW738uG/lIaUUpRoFUsyaBZHQJ3vnVZs9B91fZQoaAZoCWgPQwjk1w+xwUIFwJSGlFKUaBVLMmgWR0Cd7xpHI6sAdX2UKGgGaAloD0MIYOXQItv58r+UhpRSlGgVSzJoFkdAnfT3JHRTj3V9lChoBmgJaA9DCNffEoB/Cv2/lIaUUpRoFUsyaBZHQJ30eOMl1KZ1fZQoaAZoCWgPQwhjt88qM2X8v5SGlFKUaBVLMmgWR0Cd8/UeuFHsdX2UKGgGaAloD0MIdjdPdciN+7+UhpRSlGgVSzJoFkdAnfNyRwIdEXV9lChoBmgJaA9DCI/ecB+5lQPAlIaUUpRoFUsyaBZHQJ35d5D7ZWd1fZQoaAZoCWgPQwj8j0yHTk/6v5SGlFKUaBVLMmgWR0Cd+PbRWtEHdX2UKGgGaAloD0MItvXTf9YcAcCUhpRSlGgVSzJoFkdAnfhyWzF+/nV9lChoBmgJaA9DCI9TdCSXf/i/lIaUUpRoFUsyaBZHQJ3377+DOC51fZQoaAZoCWgPQwglrfiGwmfSv5SGlFKUaBVLMmgWR0Cd/IVd5Y5ldX2UKGgGaAloD0MIjiEAOPbsBcCUhpRSlGgVSzJoFkdAnfwDyWiUPnV9lChoBmgJaA9DCCRFZFjFm/a/lIaUUpRoFUsyaBZHQJ37fPa+N991fZQoaAZoCWgPQwg3qWis/R0FwJSGlFKUaBVLMmgWR0Cd+vgNPP9ldX2UKGgGaAloD0MIzVfJx+7CAMCUhpRSlGgVSzJoFkdAnf8AEU0vXnV9lChoBmgJaA9DCOUrgZTYNeC/lIaUUpRoFUsyaBZHQJ3+fi97F851fZQoaAZoCWgPQwgCYhIu5FHwv5SGlFKUaBVLMmgWR0Cd/fd7v5P/dX2UKGgGaAloD0MIp60RwTg49L+UhpRSlGgVSzJoFkdAnf1y0F8ohXV9lChoBmgJaA9DCAR1yqMbIf2/lIaUUpRoFUsyaBZHQJ4BSv0RODd1fZQoaAZoCWgPQwgiT5Kumfzvv5SGlFKUaBVLMmgWR0CeAMnMMZxadX2UKGgGaAloD0MIvcPt0LCY/L+UhpRSlGgVSzJoFkdAngBE8aGYbHV9lChoBmgJaA9DCBXJVwIp8fm/lIaUUpRoFUsyaBZHQJ3/wa4tpVV1fZQoaAZoCWgPQwhTBDi9i/fzv5SGlFKUaBVLMmgWR0CeA5SydFvydX2UKGgGaAloD0MIfXcrS3QW8b+UhpRSlGgVSzJoFkdAngMSzkZJkHV9lChoBmgJaA9DCDBHj9/bdPu/lIaUUpRoFUsyaBZHQJ4CjGxUvPF1fZQoaAZoCWgPQwh2cRsN4G32v5SGlFKUaBVLMmgWR0CeAgdxyXD4dX2UKGgGaAloD0MImBb1Se6w/7+UhpRSlGgVSzJoFkdAngX++dsi0XV9lChoBmgJaA9DCI20VN6OsPe/lIaUUpRoFUsyaBZHQJ4FfjU/fO51fZQoaAZoCWgPQwgkXp7OFSX2v5SGlFKUaBVLMmgWR0CeBPk8RtgsdX2UKGgGaAloD0MIDmd+NQcI77+UhpRSlGgVSzJoFkdAngR1UlzEJnV9lChoBmgJaA9DCKn7AKQ28fC/lIaUUpRoFUsyaBZHQJ4IWfg75mB1fZQoaAZoCWgPQwiJmujzUcbzv5SGlFKUaBVLMmgWR0CeB9gg5imVdX2UKGgGaAloD0MI8wGBzqTNBMCUhpRSlGgVSzJoFkdAngdR1oxpL3V9lChoBmgJaA9DCAK7mjxldfm/lIaUUpRoFUsyaBZHQJ4GzPrv9cd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16842, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.6013883981853723, "std_reward": 0.6626591705956062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-19T22:29:17.808398"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7576a14a336a9bc66f7a5d2a6e4ff8b02c2517f3f572fcdecb6c627ea8084f3
|
3 |
size 2387
|