moghis commited on
Commit
af0fd48
1 Parent(s): 478da45

Five commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -11.56 +/- 4.61
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -1.60 +/- 0.66
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8a427bd672142526e8e3bc25c3f58c3f243fcedda35eb545f4af370ddaf43ed7
3
- size 108159
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b5b00b7dc8dd16afca2a783e7c3dd3126bb6083c9916490ecdcd02e39f80f57
3
+ size 109672
a2c-PandaReachDense-v2/data CHANGED
@@ -4,14 +4,16 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f90dbece710>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f90dbed97c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
- ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
 
15
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
  "optimizer_kwargs": {
17
  "alpha": 0.99,
@@ -19,55 +21,55 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000000,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1684526872912871650,
28
- "learning_rate": 0.0008,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo1h0P1nZVT7TR8m/oDiGP0l0pb2f5ae+eeENv9rLBD8oWiw+begrv5RfBD/V8te/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/buUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]]",
38
- "desired_goal": "[[ 0.9544775 0.20883693 -1.5725044 ]\n [ 1.048603 -0.0807882 -0.32792374]\n [-0.5542217 0.5187355 0.16831267]\n [-0.6715153 0.5170834 -1.6870981 ]]",
39
- "observation": "[[ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVWiYPStNvT2yGF8+/28JvvWcnj08CVQ9xZoFvhgeO7y00B4855Xwvb4Zzj3Lbro6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[ 0.07441775 0.09243234 0.21786764]\n [-0.1342163 0.07744781 0.05176662]\n [-0.13047321 -0.01142075 0.00969331]\n [-0.11747342 0.10063504 0.00142237]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
- "use_sde": false,
54
  "sde_sample_freq": -1,
55
- "_current_progress_remaining": 0.0,
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0J5H0dbI8CUhpRSlIwBbJRLMowBdJRHQKb0vx1gYxd1fZQoaAZoCWgPQwgVONkG7lAjwJSGlFKUaBVLMmgWR0Cm9IHpjc2zdX2UKGgGaAloD0MIcaq1MAtVIsCUhpRSlGgVSzJoFkdApvREgOjIrHV9lChoBmgJaA9DCAwEATJ0VCHAlIaUUpRoFUsyaBZHQKb0Avnr6cl1fZQoaAZoCWgPQwgM5q+QudIiwJSGlFKUaBVLMmgWR0Cm9a8ebNKRdX2UKGgGaAloD0MIxLEubqPZIcCUhpRSlGgVSzJoFkdApvVx6By0bHV9lChoBmgJaA9DCMmRzsDIGyXAlIaUUpRoFUsyaBZHQKb1NFPSDyx1fZQoaAZoCWgPQwh96lil9HwiwJSGlFKUaBVLMmgWR0Cm9PPBSDRMdX2UKGgGaAloD0MI7Ggc6nctM8CUhpRSlGgVSzJoFkdApvayHj6vaHV9lChoBmgJaA9DCM6o+Sr5TDPAlIaUUpRoFUsyaBZHQKb2dPqLS/l1fZQoaAZoCWgPQwiR1ELJ5JwmwJSGlFKUaBVLMmgWR0Cm9jepfhMrdX2UKGgGaAloD0MIP5C8cyi7IsCUhpRSlGgVSzJoFkdApvX2HxjJ+3V9lChoBmgJaA9DCMlWl1MCLjzAlIaUUpRoFUsyaBZHQKb3rlYlpoN1fZQoaAZoCWgPQwht/fSfNZ8iwJSGlFKUaBVLMmgWR0Cm93DUVi4KdX2UKGgGaAloD0MIieyDLAt+IsCUhpRSlGgVSzJoFkdApvczgflp5HV9lChoBmgJaA9DCHY1ecpqMiDAlIaUUpRoFUsyaBZHQKb28oE0SAZ1fZQoaAZoCWgPQwgmGw+22HUkwJSGlFKUaBVLMmgWR0Cm+JADRtxddX2UKGgGaAloD0MIv7hUpS1uIcCUhpRSlGgVSzJoFkdApvhSd8RcvHV9lChoBmgJaA9DCMh8QKAzuSLAlIaUUpRoFUsyaBZHQKb4FL/S6Ud1fZQoaAZoCWgPQwiWICOgwgEiwJSGlFKUaBVLMmgWR0Cm99NKyv9tdX2UKGgGaAloD0MIdAtdiUBdIcCUhpRSlGgVSzJoFkdApvmBKnNxEXV9lChoBmgJaA9DCCum0k84iyjAlIaUUpRoFUsyaBZHQKb5Q6y0KJF1fZQoaAZoCWgPQwisyVNW000kwJSGlFKUaBVLMmgWR0Cm+QYGD+R6dX2UKGgGaAloD0MItFiK5CtxJMCUhpRSlGgVSzJoFkdApvjEwFkhBHV9lChoBmgJaA9DCDEJF/IIXiTAlIaUUpRoFUsyaBZHQKb6cb9ZRsN1fZQoaAZoCWgPQwi2heelYsMfwJSGlFKUaBVLMmgWR0Cm+jS2phnbdX2UKGgGaAloD0MIWDuKc9SpIMCUhpRSlGgVSzJoFkdApvn3VXmvGXV9lChoBmgJaA9DCNxHbk26HSTAlIaUUpRoFUsyaBZHQKb5tfoA4n51fZQoaAZoCWgPQwjCFVCopwcjwJSGlFKUaBVLMmgWR0Cm+2dbPhQ4dX2UKGgGaAloD0MIkxgEVg4NIsCUhpRSlGgVSzJoFkdApvsqCrcTJ3V9lChoBmgJaA9DCHMrhNVYUiHAlIaUUpRoFUsyaBZHQKb67HcUM5R1fZQoaAZoCWgPQwjOHJJaKDkgwJSGlFKUaBVLMmgWR0Cm+qtwzch1dX2UKGgGaAloD0MIQj7o2axqJsCUhpRSlGgVSzJoFkdApvxYiNbTt3V9lChoBmgJaA9DCE4LXvQVpCPAlIaUUpRoFUsyaBZHQKb8G5lvqC91fZQoaAZoCWgPQwh41JgQc7kewJSGlFKUaBVLMmgWR0Cm+93trsSkdX2UKGgGaAloD0MIf0xr09g+HcCUhpRSlGgVSzJoFkdApvucZJkGzXV9lChoBmgJaA9DCJ+RCI1gQyPAlIaUUpRoFUsyaBZHQKb9Tddmg8N1fZQoaAZoCWgPQwgkK78MxpArwJSGlFKUaBVLMmgWR0Cm/RCyY5T7dX2UKGgGaAloD0MIO6jEdYz7HMCUhpRSlGgVSzJoFkdApvzS/Zdv9HV9lChoBmgJaA9DCCOjA5KwbyHAlIaUUpRoFUsyaBZHQKb8kXwb2lF1fZQoaAZoCWgPQwgiHLPsSTgjwJSGlFKUaBVLMmgWR0Cm/jIZZSvUdX2UKGgGaAloD0MIij4fZcSlGMCUhpRSlGgVSzJoFkdApv31SqEOAnV9lChoBmgJaA9DCK+UZYhjXRvAlIaUUpRoFUsyaBZHQKb9t6guh9N1fZQoaAZoCWgPQwheLuI7MfsdwJSGlFKUaBVLMmgWR0Cm/XZEc81XdX2UKGgGaAloD0MIFOtU+Z7xGsCUhpRSlGgVSzJoFkdApv8g+OfdynV9lChoBmgJaA9DCL9+iA0WFiDAlIaUUpRoFUsyaBZHQKb+44FRpDh1fZQoaAZoCWgPQwhnKVlOQrkcwJSGlFKUaBVLMmgWR0Cm/qXrD63zdX2UKGgGaAloD0MII/WeymmvGcCUhpRSlGgVSzJoFkdApv5kz41xbXV9lChoBmgJaA9DCO84RUdyGSLAlIaUUpRoFUsyaBZHQKcACpvP1L91fZQoaAZoCWgPQwgF4J9SJWIgwJSGlFKUaBVLMmgWR0Cm/80NayKOdX2UKGgGaAloD0MIh/4JLlbEI8CUhpRSlGgVSzJoFkdApv+PWattAXV9lChoBmgJaA9DCIarAyDumh7AlIaUUpRoFUsyaBZHQKb/Tda+vhZ1fZQoaAZoCWgPQwjXoZqSrBsjwJSGlFKUaBVLMmgWR0CnAOxGUfPpdX2UKGgGaAloD0MId4GSAgvYJcCUhpRSlGgVSzJoFkdApwCuvjfelHV9lChoBmgJaA9DCChFK/cCcyLAlIaUUpRoFUsyaBZHQKcAcQ5myxB1fZQoaAZoCWgPQwhS81XysRsdwJSGlFKUaBVLMmgWR0CnAC+NkvsadX2UKGgGaAloD0MIO6sF9pjYIcCUhpRSlGgVSzJoFkdApwHiPp6hQHV9lChoBmgJaA9DCI0LB0KySCLAlIaUUpRoFUsyaBZHQKcBpM6BAfN1fZQoaAZoCWgPQwikUuxoHFocwJSGlFKUaBVLMmgWR0CnAWcbrC3xdX2UKGgGaAloD0MI+1qXGqEfJ8CUhpRSlGgVSzJoFkdApwElqJuVHHV9lChoBmgJaA9DCNejcD0K1yPAlIaUUpRoFUsyaBZHQKcCyE8q4H51fZQoaAZoCWgPQwjXpNsSuUggwJSGlFKUaBVLMmgWR0CnAorBj4HpdX2UKGgGaAloD0MIcM0d/S9nG8CUhpRSlGgVSzJoFkdApwJNBD5TInV9lChoBmgJaA9DCKj/rPnxtyDAlIaUUpRoFUsyaBZHQKcCC3kPtlZ1fZQoaAZoCWgPQwitUKT7OfUcwJSGlFKUaBVLMmgWR0CnA7dXDFZQdX2UKGgGaAloD0MIBYnt7gE6IcCUhpRSlGgVSzJoFkdApwN504iosXV9lChoBmgJaA9DCGozTkNUsSDAlIaUUpRoFUsyaBZHQKcDPCgK4QV1fZQoaAZoCWgPQwihR4yeW0ghwJSGlFKUaBVLMmgWR0CnAvqVII4VdX2UKGgGaAloD0MIyorh6gAcNsCUhpRSlGgVSzJoFkdApwSp4dIXj3V9lChoBmgJaA9DCLA9syRABSXAlIaUUpRoFUsyaBZHQKcEbJcPe551fZQoaAZoCWgPQwjqJcYy/eohwJSGlFKUaBVLMmgWR0CnBC7mEGqxdX2UKGgGaAloD0MI7gp9sIydHMCUhpRSlGgVSzJoFkdApwPuNo8IRnV9lChoBmgJaA9DCGSV0jO9FB3AlIaUUpRoFUsyaBZHQKcFlvgm7at1fZQoaAZoCWgPQwgM5xpmaLQlwJSGlFKUaBVLMmgWR0CnBVmOuJUHdX2UKGgGaAloD0MI3UWYolwyIMCUhpRSlGgVSzJoFkdApwUb8R+SbHV9lChoBmgJaA9DCDjcR25NAiLAlIaUUpRoFUsyaBZHQKcE2oa1kUd1fZQoaAZoCWgPQwhKYd7jTOMewJSGlFKUaBVLMmgWR0CnBodX9zfadX2UKGgGaAloD0MIIXam0HktHMCUhpRSlGgVSzJoFkdApwZJ3iaRZHV9lChoBmgJaA9DCMf2WtB74xvAlIaUUpRoFUsyaBZHQKcGDDtw71Z1fZQoaAZoCWgPQwgOayqLwhI4wJSGlFKUaBVLMmgWR0CnBcsolUqAdX2UKGgGaAloD0MIu5f75CjQHsCUhpRSlGgVSzJoFkdApwdspAlfJHV9lChoBmgJaA9DCF3dsdgmPSbAlIaUUpRoFUsyaBZHQKcHLyfcvdx1fZQoaAZoCWgPQwiwWMNF7rkpwJSGlFKUaBVLMmgWR0CnBvHZTQ3QdX2UKGgGaAloD0MI1qnyPSPJIcCUhpRSlGgVSzJoFkdApwawt+TePHV9lChoBmgJaA9DCJVGzOzz8CTAlIaUUpRoFUsyaBZHQKcI5V2A5Jd1fZQoaAZoCWgPQwhR+dfyyp0kwJSGlFKUaBVLMmgWR0CnCKog/1QJdX2UKGgGaAloD0MI3J4gsd31IcCUhpRSlGgVSzJoFkdApwhs/Y8MeHV9lChoBmgJaA9DCImYEkn0NjHAlIaUUpRoFUsyaBZHQKcILA6dUbV1fZQoaAZoCWgPQwh88UV7vJAbwJSGlFKUaBVLMmgWR0CnCniNKh+OdX2UKGgGaAloD0MIvRjKiXblIMCUhpRSlGgVSzJoFkdApwo7r/sE7nV9lChoBmgJaA9DCCC4yhMIlzDAlIaUUpRoFUsyaBZHQKcJ/whGH591fZQoaAZoCWgPQwh4nKIjuTwkwJSGlFKUaBVLMmgWR0CnCb4EnssydX2UKGgGaAloD0MIHZHvUuoKJ8CUhpRSlGgVSzJoFkdApwv5NGmUGHV9lChoBmgJaA9DCKtdE9Iawx7AlIaUUpRoFUsyaBZHQKcLvFl05lx1fZQoaAZoCWgPQwh39pUH6VElwJSGlFKUaBVLMmgWR0CnC3881XNkdX2UKGgGaAloD0MIEVSNXg2wIsCUhpRSlGgVSzJoFkdApws+YfGMoHV9lChoBmgJaA9DCKn1fqMdJyfAlIaUUpRoFUsyaBZHQKcN+VLSNOx1fZQoaAZoCWgPQwjXicvxCiQjwJSGlFKUaBVLMmgWR0CnDb2EK3NLdX2UKGgGaAloD0MIA0AVN24hIsCUhpRSlGgVSzJoFkdApw2AixFAmnV9lChoBmgJaA9DCD9xAP2+Nz3AlIaUUpRoFUsyaBZHQKcNQD0UXYV1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50000,
66
- "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 0.9,
69
  "ent_coef": 0.0,
70
- "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
72
  "normalize_advantage": false,
73
  "observation_space": {
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f35f67b84c0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f35f699bd80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
  "optimizer_kwargs": {
19
  "alpha": 0.99,
 
21
  "weight_decay": 0
22
  }
23
  },
24
+ "num_timesteps": 538952,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1684533429431851675,
30
+ "learning_rate": 0.00096,
31
  "tensorboard_log": null,
32
  "lr_schedule": {
33
  ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
  },
36
  "_last_obs": {
37
  ":type:": "<class 'collections.OrderedDict'>",
38
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/rbPxiDvj+gmTg/tHmPP+BwfL1psoM+sm3/v5BCZL/ThxM/cldjP6y12r/aaD6/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuTDIPwjUuj/Esz0/UpSLP0EIQL3/Cxg+MBzav99xTL+7I2o/CBJ4P1qG1L9RcZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+ts/GIO+P6CZOD/JN2Q9tMECvP3lELy0eY8/4HB8vWmygz4WTVI94XiAPMnqFDmybf+/kEJkv9OHEz+kUIs+jT3HPIdy1D1yV2M/rLXav9poPr8IT428B4I2vWRAgLyUaA5LBEsGhpRoEnSUUpR1Lg==",
39
+ "achieved_goal": "[[ 1.7185787 1.4883757 0.72109413]\n [ 1.1209016 -0.06163108 0.25722054]\n [-1.9955351 -0.89164066 0.57629126]\n [ 0.88805306 -1.7086692 -0.7437874 ]]",
40
+ "desired_goal": "[[ 1.5639869 1.4595957 0.74102426]\n [ 1.0904639 -0.04688287 0.14848326]\n [-1.7039852 -0.79861253 0.9146077 ]\n [ 0.96902514 -1.6603501 -1.2456456 ]]",
41
+ "observation": "[[ 1.7185787e+00 1.4883757e+00 7.2109413e-01 5.5717263e-02\n -7.9807527e-03 -8.8438960e-03]\n [ 1.1209016e+00 -6.1631083e-02 2.5722054e-01 5.1343046e-02\n 1.5682640e-02 1.4201844e-04]\n [-1.9955351e+00 -8.9164066e-01 5.7629126e-01 2.7209961e-01\n 2.4321342e-02 1.0373407e-01]\n [ 8.8805306e-01 -1.7086692e+00 -7.4378741e-01 -1.7249599e-02\n -4.4557597e-02 -1.5655704e-02]]"
42
  },
43
  "_last_episode_starts": {
44
  ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
46
  },
47
  "_last_original_obs": {
48
  ":type:": "<class 'collections.OrderedDict'>",
49
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYhWwvPMO0bwsLE89O5XEPOjnHb1RwJg+3ktivSI9oD1u1zQ+3cURPYDw6r0Kjo4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
50
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
51
+ "desired_goal": "[[-0.02149457 -0.02551982 0.05057923]\n [ 0.02399694 -0.03855124 0.29834226]\n [-0.05524813 0.0782416 0.17660305]\n [ 0.03558909 -0.11471653 0.27842742]]",
52
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
53
  },
54
  "_episode_num": 0,
55
+ "use_sde": true,
56
  "sde_sample_freq": -1,
57
+ "_current_progress_remaining": 0.461056,
58
  "_stats_window_size": 100,
59
  "ep_info_buffer": {
60
  ":type:": "<class 'collections.deque'>",
61
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISWdg5GXN9b+UhpRSlIwBbJRLMowBdJRHQJ3EGnO0LMN1fZQoaAZoCWgPQwi4rS08L9Xxv5SGlFKUaBVLMmgWR0Cdw5ihWYF8dX2UKGgGaAloD0MIm3PwTGiS7r+UhpRSlGgVSzJoFkdAncMSUornT3V9lChoBmgJaA9DCETAIVSpWfi/lIaUUpRoFUsyaBZHQJ3CjW7OE/V1fZQoaAZoCWgPQwgXnSy13m/wv5SGlFKUaBVLMmgWR0CdxmhdMTN/dX2UKGgGaAloD0MInIaowp9h8L+UhpRSlGgVSzJoFkdAncXmelKsdXV9lChoBmgJaA9DCCtoWmJltPW/lIaUUpRoFUsyaBZHQJ3FX/jsD4h1fZQoaAZoCWgPQwhz9zk+WjwBwJSGlFKUaBVLMmgWR0CdxNrtmcvvdX2UKGgGaAloD0MIXjC45o5+9b+UhpRSlGgVSzJoFkdAnci8Oby6MHV9lChoBmgJaA9DCAA6zJcX4OG/lIaUUpRoFUsyaBZHQJ3IOm1pj+d1fZQoaAZoCWgPQwgw8rImFvjzv5SGlFKUaBVLMmgWR0Cdx7QTEit8dX2UKGgGaAloD0MIYJFfP8QG97+UhpRSlGgVSzJoFkdAnccvNzKcNHV9lChoBmgJaA9DCPJ376gx4fK/lIaUUpRoFUsyaBZHQJ3LNFWn0kJ1fZQoaAZoCWgPQwhdixagbbXgv5SGlFKUaBVLMmgWR0CdyrKiwjdIdX2UKGgGaAloD0MI4nMn2H+d0L+UhpRSlGgVSzJoFkdAncoscZLqU3V9lChoBmgJaA9DCOKS407poPi/lIaUUpRoFUsyaBZHQJ3Jp19v0iB1fZQoaAZoCWgPQwiUTE7tDFPwv5SGlFKUaBVLMmgWR0CdzYp/PPcBdX2UKGgGaAloD0MInZ53Y0Fh8r+UhpRSlGgVSzJoFkdAnc0Iouwos3V9lChoBmgJaA9DCA9/TdaoR/K/lIaUUpRoFUsyaBZHQJ3MgnRb8m91fZQoaAZoCWgPQwjaG3xhMlXkv5SGlFKUaBVLMmgWR0Cdy/2K2rn1dX2UKGgGaAloD0MImWa610m9/7+UhpRSlGgVSzJoFkdAnc/mqgh8pnV9lChoBmgJaA9DCNcTXRd+8ALAlIaUUpRoFUsyaBZHQJ3PZPM0P6N1fZQoaAZoCWgPQwiJDKt4I3Ppv5SGlFKUaBVLMmgWR0Cdzt8KohpydX2UKGgGaAloD0MIO2743XRL77+UhpRSlGgVSzJoFkdAnc5ZmRNh3XV9lChoBmgJaA9DCFd2weCaO+a/lIaUUpRoFUsyaBZHQJ3SXHim2st1fZQoaAZoCWgPQwid2EP7WMHpv5SGlFKUaBVLMmgWR0Cd0drYGt6pdX2UKGgGaAloD0MIGmoUksxq5L+UhpRSlGgVSzJoFkdAndFUmplz2nV9lChoBmgJaA9DCH78pUV9UvW/lIaUUpRoFUsyaBZHQJ3Qz7P6bfB1fZQoaAZoCWgPQwijrrX3qSrtv5SGlFKUaBVLMmgWR0Cd1LDu0CzUdX2UKGgGaAloD0MIn1p9dVUg6r+UhpRSlGgVSzJoFkdAndQvKZDzAnV9lChoBmgJaA9DCBAhrpy9c/S/lIaUUpRoFUsyaBZHQJ3TqPaL4vh1fZQoaAZoCWgPQwhnYroQq7/zv5SGlFKUaBVLMmgWR0Cd0yQBPsRhdX2UKGgGaAloD0MIsvZ3tkdv8L+UhpRSlGgVSzJoFkdAndcjy8SPEXV9lChoBmgJaA9DCOP8TShEQOy/lIaUUpRoFUsyaBZHQJ3WopkPMB91fZQoaAZoCWgPQwirlJ7pJcYCwJSGlFKUaBVLMmgWR0Cd1hwpON5udX2UKGgGaAloD0MIyZHOwMhL97+UhpRSlGgVSzJoFkdAndWW65Gz8nV9lChoBmgJaA9DCDI7i96pgOy/lIaUUpRoFUsyaBZHQJ3ZjfQ8fV91fZQoaAZoCWgPQwjlZOJWQQzXv5SGlFKUaBVLMmgWR0Cd2Qw7DEWJdX2UKGgGaAloD0MI3jr/dtkv67+UhpRSlGgVSzJoFkdAndiGD+R5knV9lChoBmgJaA9DCKlKW1zjs+i/lIaUUpRoFUsyaBZHQJ3YAWweNkx1fZQoaAZoCWgPQwjtvI3NjtTnv5SGlFKUaBVLMmgWR0Cd2+szl90BdX2UKGgGaAloD0MI+z2xTpVv6b+UhpRSlGgVSzJoFkdAndtpZbILgHV9lChoBmgJaA9DCBu5bkp5rdS/lIaUUpRoFUsyaBZHQJ3a4wUQCjl1fZQoaAZoCWgPQwjXprG9FrT9v5SGlFKUaBVLMmgWR0Cd2l4Cp3otdX2UKGgGaAloD0MI4zWv6qwW6b+UhpRSlGgVSzJoFkdAnd5cdT5wfnV9lChoBmgJaA9DCDs42JsYkgDAlIaUUpRoFUsyaBZHQJ3d2piqhlF1fZQoaAZoCWgPQwiuEcE4uLT7v5SGlFKUaBVLMmgWR0Cd3VRmbsnidX2UKGgGaAloD0MIGhcOhGQhCMCUhpRSlGgVSzJoFkdAndzPtIClrXV9lChoBmgJaA9DCP8gkiHH1u2/lIaUUpRoFUsyaBZHQJ3gxB9kSVZ1fZQoaAZoCWgPQwhRS3MrhNXkv5SGlFKUaBVLMmgWR0Cd4EMzuWrwdX2UKGgGaAloD0MI0CozpfV38r+UhpRSlGgVSzJoFkdAnd+9ZRsMzHV9lChoBmgJaA9DCOup1VdXBeG/lIaUUpRoFUsyaBZHQJ3fOMR6F/R1fZQoaAZoCWgPQwiK48Cr5Y7wv5SGlFKUaBVLMmgWR0Cd5KIi1RcedX2UKGgGaAloD0MIfjoeM1DZ+b+UhpRSlGgVSzJoFkdAneQiKaXrt3V9lChoBmgJaA9DCHUfgNQmDv6/lIaUUpRoFUsyaBZHQJ3jnhCMPz51fZQoaAZoCWgPQwjswg/Op075v5SGlFKUaBVLMmgWR0Cd4xsQd0aIdX2UKGgGaAloD0MIt7bwvFQs8b+UhpRSlGgVSzJoFkdAneh3Heaa1HV9lChoBmgJaA9DCG1y+KQTifC/lIaUUpRoFUsyaBZHQJ3n+RW912d1fZQoaAZoCWgPQwi4lPPF3ovfv5SGlFKUaBVLMmgWR0Cd53TzND+jdX2UKGgGaAloD0MIJqjhW1i367+UhpRSlGgVSzJoFkdAnebx+F10T3V9lChoBmgJaA9DCIJXy52ZoP2/lIaUUpRoFUsyaBZHQJ3sXX4CZF51fZQoaAZoCWgPQwhX6INlbOj7v5SGlFKUaBVLMmgWR0Cd692alUIcdX2UKGgGaAloD0MIYcQ+ARSj5b+UhpRSlGgVSzJoFkdAnetZJTVDr3V9lChoBmgJaA9DCOnUlc/yvO6/lIaUUpRoFUsyaBZHQJ3q1pblijN1fZQoaAZoCWgPQwiEEJAvoQLyv5SGlFKUaBVLMmgWR0Cd8KDEm6XjdX2UKGgGaAloD0MI/gsEATJ03r+UhpRSlGgVSzJoFkdAnfAhfjS5RXV9lChoBmgJaA9DCKsGYW738uG/lIaUUpRoFUsyaBZHQJ3vnVZs9B91fZQoaAZoCWgPQwjk1w+xwUIFwJSGlFKUaBVLMmgWR0Cd7xpHI6sAdX2UKGgGaAloD0MIYOXQItv58r+UhpRSlGgVSzJoFkdAnfT3JHRTj3V9lChoBmgJaA9DCNffEoB/Cv2/lIaUUpRoFUsyaBZHQJ30eOMl1KZ1fZQoaAZoCWgPQwhjt88qM2X8v5SGlFKUaBVLMmgWR0Cd8/UeuFHsdX2UKGgGaAloD0MIdjdPdciN+7+UhpRSlGgVSzJoFkdAnfNyRwIdEXV9lChoBmgJaA9DCI/ecB+5lQPAlIaUUpRoFUsyaBZHQJ35d5D7ZWd1fZQoaAZoCWgPQwj8j0yHTk/6v5SGlFKUaBVLMmgWR0Cd+PbRWtEHdX2UKGgGaAloD0MItvXTf9YcAcCUhpRSlGgVSzJoFkdAnfhyWzF+/nV9lChoBmgJaA9DCI9TdCSXf/i/lIaUUpRoFUsyaBZHQJ3377+DOC51fZQoaAZoCWgPQwglrfiGwmfSv5SGlFKUaBVLMmgWR0Cd/IVd5Y5ldX2UKGgGaAloD0MIjiEAOPbsBcCUhpRSlGgVSzJoFkdAnfwDyWiUPnV9lChoBmgJaA9DCCRFZFjFm/a/lIaUUpRoFUsyaBZHQJ37fPa+N991fZQoaAZoCWgPQwg3qWis/R0FwJSGlFKUaBVLMmgWR0Cd+vgNPP9ldX2UKGgGaAloD0MIzVfJx+7CAMCUhpRSlGgVSzJoFkdAnf8AEU0vXnV9lChoBmgJaA9DCOUrgZTYNeC/lIaUUpRoFUsyaBZHQJ3+fi97F851fZQoaAZoCWgPQwgCYhIu5FHwv5SGlFKUaBVLMmgWR0Cd/fd7v5P/dX2UKGgGaAloD0MIp60RwTg49L+UhpRSlGgVSzJoFkdAnf1y0F8ohXV9lChoBmgJaA9DCAR1yqMbIf2/lIaUUpRoFUsyaBZHQJ4BSv0RODd1fZQoaAZoCWgPQwgiT5Kumfzvv5SGlFKUaBVLMmgWR0CeAMnMMZxadX2UKGgGaAloD0MIvcPt0LCY/L+UhpRSlGgVSzJoFkdAngBE8aGYbHV9lChoBmgJaA9DCBXJVwIp8fm/lIaUUpRoFUsyaBZHQJ3/wa4tpVV1fZQoaAZoCWgPQwhTBDi9i/fzv5SGlFKUaBVLMmgWR0CeA5SydFvydX2UKGgGaAloD0MIfXcrS3QW8b+UhpRSlGgVSzJoFkdAngMSzkZJkHV9lChoBmgJaA9DCDBHj9/bdPu/lIaUUpRoFUsyaBZHQJ4CjGxUvPF1fZQoaAZoCWgPQwh2cRsN4G32v5SGlFKUaBVLMmgWR0CeAgdxyXD4dX2UKGgGaAloD0MImBb1Se6w/7+UhpRSlGgVSzJoFkdAngX++dsi0XV9lChoBmgJaA9DCI20VN6OsPe/lIaUUpRoFUsyaBZHQJ4FfjU/fO51fZQoaAZoCWgPQwgkXp7OFSX2v5SGlFKUaBVLMmgWR0CeBPk8RtgsdX2UKGgGaAloD0MIDmd+NQcI77+UhpRSlGgVSzJoFkdAngR1UlzEJnV9lChoBmgJaA9DCKn7AKQ28fC/lIaUUpRoFUsyaBZHQJ4IWfg75mB1fZQoaAZoCWgPQwiJmujzUcbzv5SGlFKUaBVLMmgWR0CeB9gg5imVdX2UKGgGaAloD0MI8wGBzqTNBMCUhpRSlGgVSzJoFkdAngdR1oxpL3V9lChoBmgJaA9DCAK7mjxldfm/lIaUUpRoFUsyaBZHQJ4GzPrv9cd1ZS4="
62
  },
63
  "ep_success_buffer": {
64
  ":type:": "<class 'collections.deque'>",
65
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
66
  },
67
+ "_n_updates": 16842,
68
+ "n_steps": 8,
69
  "gamma": 0.99,
70
  "gae_lambda": 0.9,
71
  "ent_coef": 0.0,
72
+ "vf_coef": 0.4,
73
  "max_grad_norm": 0.5,
74
  "normalize_advantage": false,
75
  "observation_space": {
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e4d8b74c9d081970fdb4ec87aa32ea08d734c95d57f252fa8ea27b1227146b4
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37aff6c9e890c7372329c54382aefdc5cfdf6635757a682b09a4c23f50546a15
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:302a83dba3cb89036ec0f66f2d4ec4420cf7957e3559fde2d33538b8c7048535
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13740c9cacc5dacd4355e201dda4d843b8ef89248f6e6e28ca4db0ab6b65dfd7
3
+ size 46718
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f90dbece710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f90dbed97c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684526872912871650, "learning_rate": 0.0008, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+/6fIPkL2obyUNfs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo1h0P1nZVT7TR8m/oDiGP0l0pb2f5ae+eeENv9rLBD8oWiw+begrv5RfBD/V8te/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/bv/p8g+QvahvJQ1+z4V6jw8fvyzuSIb/buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]\n [ 0.3919067 -0.01977075 0.49064314]]", "desired_goal": "[[ 0.9544775 0.20883693 -1.5725044 ]\n [ 1.048603 -0.0807882 -0.32792374]\n [-0.5542217 0.5187355 0.16831267]\n [-0.6715153 0.5170834 -1.6870981 ]]", "observation": "[[ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]\n [ 3.9190671e-01 -1.9770745e-02 4.9064314e-01 1.1530419e-02\n -3.4329662e-04 -7.7241817e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVWiYPStNvT2yGF8+/28JvvWcnj08CVQ9xZoFvhgeO7y00B4855Xwvb4Zzj3Lbro6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07441775 0.09243234 0.21786764]\n [-0.1342163 0.07744781 0.05176662]\n [-0.13047321 -0.01142075 0.00969331]\n [-0.11747342 0.10063504 0.00142237]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0J5H0dbI8CUhpRSlIwBbJRLMowBdJRHQKb0vx1gYxd1fZQoaAZoCWgPQwgVONkG7lAjwJSGlFKUaBVLMmgWR0Cm9IHpjc2zdX2UKGgGaAloD0MIcaq1MAtVIsCUhpRSlGgVSzJoFkdApvREgOjIrHV9lChoBmgJaA9DCAwEATJ0VCHAlIaUUpRoFUsyaBZHQKb0Avnr6cl1fZQoaAZoCWgPQwgM5q+QudIiwJSGlFKUaBVLMmgWR0Cm9a8ebNKRdX2UKGgGaAloD0MIxLEubqPZIcCUhpRSlGgVSzJoFkdApvVx6By0bHV9lChoBmgJaA9DCMmRzsDIGyXAlIaUUpRoFUsyaBZHQKb1NFPSDyx1fZQoaAZoCWgPQwh96lil9HwiwJSGlFKUaBVLMmgWR0Cm9PPBSDRMdX2UKGgGaAloD0MI7Ggc6nctM8CUhpRSlGgVSzJoFkdApvayHj6vaHV9lChoBmgJaA9DCM6o+Sr5TDPAlIaUUpRoFUsyaBZHQKb2dPqLS/l1fZQoaAZoCWgPQwiR1ELJ5JwmwJSGlFKUaBVLMmgWR0Cm9jepfhMrdX2UKGgGaAloD0MIP5C8cyi7IsCUhpRSlGgVSzJoFkdApvX2HxjJ+3V9lChoBmgJaA9DCMlWl1MCLjzAlIaUUpRoFUsyaBZHQKb3rlYlpoN1fZQoaAZoCWgPQwht/fSfNZ8iwJSGlFKUaBVLMmgWR0Cm93DUVi4KdX2UKGgGaAloD0MIieyDLAt+IsCUhpRSlGgVSzJoFkdApvczgflp5HV9lChoBmgJaA9DCHY1ecpqMiDAlIaUUpRoFUsyaBZHQKb28oE0SAZ1fZQoaAZoCWgPQwgmGw+22HUkwJSGlFKUaBVLMmgWR0Cm+JADRtxddX2UKGgGaAloD0MIv7hUpS1uIcCUhpRSlGgVSzJoFkdApvhSd8RcvHV9lChoBmgJaA9DCMh8QKAzuSLAlIaUUpRoFUsyaBZHQKb4FL/S6Ud1fZQoaAZoCWgPQwiWICOgwgEiwJSGlFKUaBVLMmgWR0Cm99NKyv9tdX2UKGgGaAloD0MIdAtdiUBdIcCUhpRSlGgVSzJoFkdApvmBKnNxEXV9lChoBmgJaA9DCCum0k84iyjAlIaUUpRoFUsyaBZHQKb5Q6y0KJF1fZQoaAZoCWgPQwisyVNW000kwJSGlFKUaBVLMmgWR0Cm+QYGD+R6dX2UKGgGaAloD0MItFiK5CtxJMCUhpRSlGgVSzJoFkdApvjEwFkhBHV9lChoBmgJaA9DCDEJF/IIXiTAlIaUUpRoFUsyaBZHQKb6cb9ZRsN1fZQoaAZoCWgPQwi2heelYsMfwJSGlFKUaBVLMmgWR0Cm+jS2phnbdX2UKGgGaAloD0MIWDuKc9SpIMCUhpRSlGgVSzJoFkdApvn3VXmvGXV9lChoBmgJaA9DCNxHbk26HSTAlIaUUpRoFUsyaBZHQKb5tfoA4n51fZQoaAZoCWgPQwjCFVCopwcjwJSGlFKUaBVLMmgWR0Cm+2dbPhQ4dX2UKGgGaAloD0MIkxgEVg4NIsCUhpRSlGgVSzJoFkdApvsqCrcTJ3V9lChoBmgJaA9DCHMrhNVYUiHAlIaUUpRoFUsyaBZHQKb67HcUM5R1fZQoaAZoCWgPQwjOHJJaKDkgwJSGlFKUaBVLMmgWR0Cm+qtwzch1dX2UKGgGaAloD0MIQj7o2axqJsCUhpRSlGgVSzJoFkdApvxYiNbTt3V9lChoBmgJaA9DCE4LXvQVpCPAlIaUUpRoFUsyaBZHQKb8G5lvqC91fZQoaAZoCWgPQwh41JgQc7kewJSGlFKUaBVLMmgWR0Cm+93trsSkdX2UKGgGaAloD0MIf0xr09g+HcCUhpRSlGgVSzJoFkdApvucZJkGzXV9lChoBmgJaA9DCJ+RCI1gQyPAlIaUUpRoFUsyaBZHQKb9Tddmg8N1fZQoaAZoCWgPQwgkK78MxpArwJSGlFKUaBVLMmgWR0Cm/RCyY5T7dX2UKGgGaAloD0MIO6jEdYz7HMCUhpRSlGgVSzJoFkdApvzS/Zdv9HV9lChoBmgJaA9DCCOjA5KwbyHAlIaUUpRoFUsyaBZHQKb8kXwb2lF1fZQoaAZoCWgPQwgiHLPsSTgjwJSGlFKUaBVLMmgWR0Cm/jIZZSvUdX2UKGgGaAloD0MIij4fZcSlGMCUhpRSlGgVSzJoFkdApv31SqEOAnV9lChoBmgJaA9DCK+UZYhjXRvAlIaUUpRoFUsyaBZHQKb9t6guh9N1fZQoaAZoCWgPQwheLuI7MfsdwJSGlFKUaBVLMmgWR0Cm/XZEc81XdX2UKGgGaAloD0MIFOtU+Z7xGsCUhpRSlGgVSzJoFkdApv8g+OfdynV9lChoBmgJaA9DCL9+iA0WFiDAlIaUUpRoFUsyaBZHQKb+44FRpDh1fZQoaAZoCWgPQwhnKVlOQrkcwJSGlFKUaBVLMmgWR0Cm/qXrD63zdX2UKGgGaAloD0MII/WeymmvGcCUhpRSlGgVSzJoFkdApv5kz41xbXV9lChoBmgJaA9DCO84RUdyGSLAlIaUUpRoFUsyaBZHQKcACpvP1L91fZQoaAZoCWgPQwgF4J9SJWIgwJSGlFKUaBVLMmgWR0Cm/80NayKOdX2UKGgGaAloD0MIh/4JLlbEI8CUhpRSlGgVSzJoFkdApv+PWattAXV9lChoBmgJaA9DCIarAyDumh7AlIaUUpRoFUsyaBZHQKb/Tda+vhZ1fZQoaAZoCWgPQwjXoZqSrBsjwJSGlFKUaBVLMmgWR0CnAOxGUfPpdX2UKGgGaAloD0MId4GSAgvYJcCUhpRSlGgVSzJoFkdApwCuvjfelHV9lChoBmgJaA9DCChFK/cCcyLAlIaUUpRoFUsyaBZHQKcAcQ5myxB1fZQoaAZoCWgPQwhS81XysRsdwJSGlFKUaBVLMmgWR0CnAC+NkvsadX2UKGgGaAloD0MIO6sF9pjYIcCUhpRSlGgVSzJoFkdApwHiPp6hQHV9lChoBmgJaA9DCI0LB0KySCLAlIaUUpRoFUsyaBZHQKcBpM6BAfN1fZQoaAZoCWgPQwikUuxoHFocwJSGlFKUaBVLMmgWR0CnAWcbrC3xdX2UKGgGaAloD0MI+1qXGqEfJ8CUhpRSlGgVSzJoFkdApwElqJuVHHV9lChoBmgJaA9DCNejcD0K1yPAlIaUUpRoFUsyaBZHQKcCyE8q4H51fZQoaAZoCWgPQwjXpNsSuUggwJSGlFKUaBVLMmgWR0CnAorBj4HpdX2UKGgGaAloD0MIcM0d/S9nG8CUhpRSlGgVSzJoFkdApwJNBD5TInV9lChoBmgJaA9DCKj/rPnxtyDAlIaUUpRoFUsyaBZHQKcCC3kPtlZ1fZQoaAZoCWgPQwitUKT7OfUcwJSGlFKUaBVLMmgWR0CnA7dXDFZQdX2UKGgGaAloD0MIBYnt7gE6IcCUhpRSlGgVSzJoFkdApwN504iosXV9lChoBmgJaA9DCGozTkNUsSDAlIaUUpRoFUsyaBZHQKcDPCgK4QV1fZQoaAZoCWgPQwihR4yeW0ghwJSGlFKUaBVLMmgWR0CnAvqVII4VdX2UKGgGaAloD0MIyorh6gAcNsCUhpRSlGgVSzJoFkdApwSp4dIXj3V9lChoBmgJaA9DCLA9syRABSXAlIaUUpRoFUsyaBZHQKcEbJcPe551fZQoaAZoCWgPQwjqJcYy/eohwJSGlFKUaBVLMmgWR0CnBC7mEGqxdX2UKGgGaAloD0MI7gp9sIydHMCUhpRSlGgVSzJoFkdApwPuNo8IRnV9lChoBmgJaA9DCGSV0jO9FB3AlIaUUpRoFUsyaBZHQKcFlvgm7at1fZQoaAZoCWgPQwgM5xpmaLQlwJSGlFKUaBVLMmgWR0CnBVmOuJUHdX2UKGgGaAloD0MI3UWYolwyIMCUhpRSlGgVSzJoFkdApwUb8R+SbHV9lChoBmgJaA9DCDjcR25NAiLAlIaUUpRoFUsyaBZHQKcE2oa1kUd1fZQoaAZoCWgPQwhKYd7jTOMewJSGlFKUaBVLMmgWR0CnBodX9zfadX2UKGgGaAloD0MIIXam0HktHMCUhpRSlGgVSzJoFkdApwZJ3iaRZHV9lChoBmgJaA9DCMf2WtB74xvAlIaUUpRoFUsyaBZHQKcGDDtw71Z1fZQoaAZoCWgPQwgOayqLwhI4wJSGlFKUaBVLMmgWR0CnBcsolUqAdX2UKGgGaAloD0MIu5f75CjQHsCUhpRSlGgVSzJoFkdApwdspAlfJHV9lChoBmgJaA9DCF3dsdgmPSbAlIaUUpRoFUsyaBZHQKcHLyfcvdx1fZQoaAZoCWgPQwiwWMNF7rkpwJSGlFKUaBVLMmgWR0CnBvHZTQ3QdX2UKGgGaAloD0MI1qnyPSPJIcCUhpRSlGgVSzJoFkdApwawt+TePHV9lChoBmgJaA9DCJVGzOzz8CTAlIaUUpRoFUsyaBZHQKcI5V2A5Jd1fZQoaAZoCWgPQwhR+dfyyp0kwJSGlFKUaBVLMmgWR0CnCKog/1QJdX2UKGgGaAloD0MI3J4gsd31IcCUhpRSlGgVSzJoFkdApwhs/Y8MeHV9lChoBmgJaA9DCImYEkn0NjHAlIaUUpRoFUsyaBZHQKcILA6dUbV1fZQoaAZoCWgPQwh88UV7vJAbwJSGlFKUaBVLMmgWR0CnCniNKh+OdX2UKGgGaAloD0MIvRjKiXblIMCUhpRSlGgVSzJoFkdApwo7r/sE7nV9lChoBmgJaA9DCCC4yhMIlzDAlIaUUpRoFUsyaBZHQKcJ/whGH591fZQoaAZoCWgPQwh4nKIjuTwkwJSGlFKUaBVLMmgWR0CnCb4EnssydX2UKGgGaAloD0MIHZHvUuoKJ8CUhpRSlGgVSzJoFkdApwv5NGmUGHV9lChoBmgJaA9DCKtdE9Iawx7AlIaUUpRoFUsyaBZHQKcLvFl05lx1fZQoaAZoCWgPQwh39pUH6VElwJSGlFKUaBVLMmgWR0CnC3881XNkdX2UKGgGaAloD0MIEVSNXg2wIsCUhpRSlGgVSzJoFkdApws+YfGMoHV9lChoBmgJaA9DCKn1fqMdJyfAlIaUUpRoFUsyaBZHQKcN+VLSNOx1fZQoaAZoCWgPQwjXicvxCiQjwJSGlFKUaBVLMmgWR0CnDb2EK3NLdX2UKGgGaAloD0MIA0AVN24hIsCUhpRSlGgVSzJoFkdApw2AixFAmnV9lChoBmgJaA9DCD9xAP2+Nz3AlIaUUpRoFUsyaBZHQKcNQD0UXYV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f35f67b84c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f35f699bd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 538952, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684533429431851675, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/rbPxiDvj+gmTg/tHmPP+BwfL1psoM+sm3/v5BCZL/ThxM/cldjP6y12r/aaD6/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuTDIPwjUuj/Esz0/UpSLP0EIQL3/Cxg+MBzav99xTL+7I2o/CBJ4P1qG1L9RcZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+ts/GIO+P6CZOD/JN2Q9tMECvP3lELy0eY8/4HB8vWmygz4WTVI94XiAPMnqFDmybf+/kEJkv9OHEz+kUIs+jT3HPIdy1D1yV2M/rLXav9poPr8IT428B4I2vWRAgLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.7185787 1.4883757 0.72109413]\n [ 1.1209016 -0.06163108 0.25722054]\n [-1.9955351 -0.89164066 0.57629126]\n [ 0.88805306 -1.7086692 -0.7437874 ]]", "desired_goal": "[[ 1.5639869 1.4595957 0.74102426]\n [ 1.0904639 -0.04688287 0.14848326]\n [-1.7039852 -0.79861253 0.9146077 ]\n [ 0.96902514 -1.6603501 -1.2456456 ]]", "observation": "[[ 1.7185787e+00 1.4883757e+00 7.2109413e-01 5.5717263e-02\n -7.9807527e-03 -8.8438960e-03]\n [ 1.1209016e+00 -6.1631083e-02 2.5722054e-01 5.1343046e-02\n 1.5682640e-02 1.4201844e-04]\n [-1.9955351e+00 -8.9164066e-01 5.7629126e-01 2.7209961e-01\n 2.4321342e-02 1.0373407e-01]\n [ 8.8805306e-01 -1.7086692e+00 -7.4378741e-01 -1.7249599e-02\n -4.4557597e-02 -1.5655704e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYhWwvPMO0bwsLE89O5XEPOjnHb1RwJg+3ktivSI9oD1u1zQ+3cURPYDw6r0Kjo4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02149457 -0.02551982 0.05057923]\n [ 0.02399694 -0.03855124 0.29834226]\n [-0.05524813 0.0782416 0.17660305]\n [ 0.03558909 -0.11471653 0.27842742]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.461056, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISWdg5GXN9b+UhpRSlIwBbJRLMowBdJRHQJ3EGnO0LMN1fZQoaAZoCWgPQwi4rS08L9Xxv5SGlFKUaBVLMmgWR0Cdw5ihWYF8dX2UKGgGaAloD0MIm3PwTGiS7r+UhpRSlGgVSzJoFkdAncMSUornT3V9lChoBmgJaA9DCETAIVSpWfi/lIaUUpRoFUsyaBZHQJ3CjW7OE/V1fZQoaAZoCWgPQwgXnSy13m/wv5SGlFKUaBVLMmgWR0CdxmhdMTN/dX2UKGgGaAloD0MInIaowp9h8L+UhpRSlGgVSzJoFkdAncXmelKsdXV9lChoBmgJaA9DCCtoWmJltPW/lIaUUpRoFUsyaBZHQJ3FX/jsD4h1fZQoaAZoCWgPQwhz9zk+WjwBwJSGlFKUaBVLMmgWR0CdxNrtmcvvdX2UKGgGaAloD0MIXjC45o5+9b+UhpRSlGgVSzJoFkdAnci8Oby6MHV9lChoBmgJaA9DCAA6zJcX4OG/lIaUUpRoFUsyaBZHQJ3IOm1pj+d1fZQoaAZoCWgPQwgw8rImFvjzv5SGlFKUaBVLMmgWR0Cdx7QTEit8dX2UKGgGaAloD0MIYJFfP8QG97+UhpRSlGgVSzJoFkdAnccvNzKcNHV9lChoBmgJaA9DCPJ376gx4fK/lIaUUpRoFUsyaBZHQJ3LNFWn0kJ1fZQoaAZoCWgPQwhdixagbbXgv5SGlFKUaBVLMmgWR0CdyrKiwjdIdX2UKGgGaAloD0MI4nMn2H+d0L+UhpRSlGgVSzJoFkdAncoscZLqU3V9lChoBmgJaA9DCOKS407poPi/lIaUUpRoFUsyaBZHQJ3Jp19v0iB1fZQoaAZoCWgPQwiUTE7tDFPwv5SGlFKUaBVLMmgWR0CdzYp/PPcBdX2UKGgGaAloD0MInZ53Y0Fh8r+UhpRSlGgVSzJoFkdAnc0Iouwos3V9lChoBmgJaA9DCA9/TdaoR/K/lIaUUpRoFUsyaBZHQJ3MgnRb8m91fZQoaAZoCWgPQwjaG3xhMlXkv5SGlFKUaBVLMmgWR0Cdy/2K2rn1dX2UKGgGaAloD0MImWa610m9/7+UhpRSlGgVSzJoFkdAnc/mqgh8pnV9lChoBmgJaA9DCNcTXRd+8ALAlIaUUpRoFUsyaBZHQJ3PZPM0P6N1fZQoaAZoCWgPQwiJDKt4I3Ppv5SGlFKUaBVLMmgWR0Cdzt8KohpydX2UKGgGaAloD0MIO2743XRL77+UhpRSlGgVSzJoFkdAnc5ZmRNh3XV9lChoBmgJaA9DCFd2weCaO+a/lIaUUpRoFUsyaBZHQJ3SXHim2st1fZQoaAZoCWgPQwid2EP7WMHpv5SGlFKUaBVLMmgWR0Cd0drYGt6pdX2UKGgGaAloD0MIGmoUksxq5L+UhpRSlGgVSzJoFkdAndFUmplz2nV9lChoBmgJaA9DCH78pUV9UvW/lIaUUpRoFUsyaBZHQJ3Qz7P6bfB1fZQoaAZoCWgPQwijrrX3qSrtv5SGlFKUaBVLMmgWR0Cd1LDu0CzUdX2UKGgGaAloD0MIn1p9dVUg6r+UhpRSlGgVSzJoFkdAndQvKZDzAnV9lChoBmgJaA9DCBAhrpy9c/S/lIaUUpRoFUsyaBZHQJ3TqPaL4vh1fZQoaAZoCWgPQwhnYroQq7/zv5SGlFKUaBVLMmgWR0Cd0yQBPsRhdX2UKGgGaAloD0MIsvZ3tkdv8L+UhpRSlGgVSzJoFkdAndcjy8SPEXV9lChoBmgJaA9DCOP8TShEQOy/lIaUUpRoFUsyaBZHQJ3WopkPMB91fZQoaAZoCWgPQwirlJ7pJcYCwJSGlFKUaBVLMmgWR0Cd1hwpON5udX2UKGgGaAloD0MIyZHOwMhL97+UhpRSlGgVSzJoFkdAndWW65Gz8nV9lChoBmgJaA9DCDI7i96pgOy/lIaUUpRoFUsyaBZHQJ3ZjfQ8fV91fZQoaAZoCWgPQwjlZOJWQQzXv5SGlFKUaBVLMmgWR0Cd2Qw7DEWJdX2UKGgGaAloD0MI3jr/dtkv67+UhpRSlGgVSzJoFkdAndiGD+R5knV9lChoBmgJaA9DCKlKW1zjs+i/lIaUUpRoFUsyaBZHQJ3YAWweNkx1fZQoaAZoCWgPQwjtvI3NjtTnv5SGlFKUaBVLMmgWR0Cd2+szl90BdX2UKGgGaAloD0MI+z2xTpVv6b+UhpRSlGgVSzJoFkdAndtpZbILgHV9lChoBmgJaA9DCBu5bkp5rdS/lIaUUpRoFUsyaBZHQJ3a4wUQCjl1fZQoaAZoCWgPQwjXprG9FrT9v5SGlFKUaBVLMmgWR0Cd2l4Cp3otdX2UKGgGaAloD0MI4zWv6qwW6b+UhpRSlGgVSzJoFkdAnd5cdT5wfnV9lChoBmgJaA9DCDs42JsYkgDAlIaUUpRoFUsyaBZHQJ3d2piqhlF1fZQoaAZoCWgPQwiuEcE4uLT7v5SGlFKUaBVLMmgWR0Cd3VRmbsnidX2UKGgGaAloD0MIGhcOhGQhCMCUhpRSlGgVSzJoFkdAndzPtIClrXV9lChoBmgJaA9DCP8gkiHH1u2/lIaUUpRoFUsyaBZHQJ3gxB9kSVZ1fZQoaAZoCWgPQwhRS3MrhNXkv5SGlFKUaBVLMmgWR0Cd4EMzuWrwdX2UKGgGaAloD0MI0CozpfV38r+UhpRSlGgVSzJoFkdAnd+9ZRsMzHV9lChoBmgJaA9DCOup1VdXBeG/lIaUUpRoFUsyaBZHQJ3fOMR6F/R1fZQoaAZoCWgPQwiK48Cr5Y7wv5SGlFKUaBVLMmgWR0Cd5KIi1RcedX2UKGgGaAloD0MIfjoeM1DZ+b+UhpRSlGgVSzJoFkdAneQiKaXrt3V9lChoBmgJaA9DCHUfgNQmDv6/lIaUUpRoFUsyaBZHQJ3jnhCMPz51fZQoaAZoCWgPQwjswg/Op075v5SGlFKUaBVLMmgWR0Cd4xsQd0aIdX2UKGgGaAloD0MIt7bwvFQs8b+UhpRSlGgVSzJoFkdAneh3Heaa1HV9lChoBmgJaA9DCG1y+KQTifC/lIaUUpRoFUsyaBZHQJ3n+RW912d1fZQoaAZoCWgPQwi4lPPF3ovfv5SGlFKUaBVLMmgWR0Cd53TzND+jdX2UKGgGaAloD0MIJqjhW1i367+UhpRSlGgVSzJoFkdAnebx+F10T3V9lChoBmgJaA9DCIJXy52ZoP2/lIaUUpRoFUsyaBZHQJ3sXX4CZF51fZQoaAZoCWgPQwhX6INlbOj7v5SGlFKUaBVLMmgWR0Cd692alUIcdX2UKGgGaAloD0MIYcQ+ARSj5b+UhpRSlGgVSzJoFkdAnetZJTVDr3V9lChoBmgJaA9DCOnUlc/yvO6/lIaUUpRoFUsyaBZHQJ3q1pblijN1fZQoaAZoCWgPQwiEEJAvoQLyv5SGlFKUaBVLMmgWR0Cd8KDEm6XjdX2UKGgGaAloD0MI/gsEATJ03r+UhpRSlGgVSzJoFkdAnfAhfjS5RXV9lChoBmgJaA9DCKsGYW738uG/lIaUUpRoFUsyaBZHQJ3vnVZs9B91fZQoaAZoCWgPQwjk1w+xwUIFwJSGlFKUaBVLMmgWR0Cd7xpHI6sAdX2UKGgGaAloD0MIYOXQItv58r+UhpRSlGgVSzJoFkdAnfT3JHRTj3V9lChoBmgJaA9DCNffEoB/Cv2/lIaUUpRoFUsyaBZHQJ30eOMl1KZ1fZQoaAZoCWgPQwhjt88qM2X8v5SGlFKUaBVLMmgWR0Cd8/UeuFHsdX2UKGgGaAloD0MIdjdPdciN+7+UhpRSlGgVSzJoFkdAnfNyRwIdEXV9lChoBmgJaA9DCI/ecB+5lQPAlIaUUpRoFUsyaBZHQJ35d5D7ZWd1fZQoaAZoCWgPQwj8j0yHTk/6v5SGlFKUaBVLMmgWR0Cd+PbRWtEHdX2UKGgGaAloD0MItvXTf9YcAcCUhpRSlGgVSzJoFkdAnfhyWzF+/nV9lChoBmgJaA9DCI9TdCSXf/i/lIaUUpRoFUsyaBZHQJ3377+DOC51fZQoaAZoCWgPQwglrfiGwmfSv5SGlFKUaBVLMmgWR0Cd/IVd5Y5ldX2UKGgGaAloD0MIjiEAOPbsBcCUhpRSlGgVSzJoFkdAnfwDyWiUPnV9lChoBmgJaA9DCCRFZFjFm/a/lIaUUpRoFUsyaBZHQJ37fPa+N991fZQoaAZoCWgPQwg3qWis/R0FwJSGlFKUaBVLMmgWR0Cd+vgNPP9ldX2UKGgGaAloD0MIzVfJx+7CAMCUhpRSlGgVSzJoFkdAnf8AEU0vXnV9lChoBmgJaA9DCOUrgZTYNeC/lIaUUpRoFUsyaBZHQJ3+fi97F851fZQoaAZoCWgPQwgCYhIu5FHwv5SGlFKUaBVLMmgWR0Cd/fd7v5P/dX2UKGgGaAloD0MIp60RwTg49L+UhpRSlGgVSzJoFkdAnf1y0F8ohXV9lChoBmgJaA9DCAR1yqMbIf2/lIaUUpRoFUsyaBZHQJ4BSv0RODd1fZQoaAZoCWgPQwgiT5Kumfzvv5SGlFKUaBVLMmgWR0CeAMnMMZxadX2UKGgGaAloD0MIvcPt0LCY/L+UhpRSlGgVSzJoFkdAngBE8aGYbHV9lChoBmgJaA9DCBXJVwIp8fm/lIaUUpRoFUsyaBZHQJ3/wa4tpVV1fZQoaAZoCWgPQwhTBDi9i/fzv5SGlFKUaBVLMmgWR0CeA5SydFvydX2UKGgGaAloD0MIfXcrS3QW8b+UhpRSlGgVSzJoFkdAngMSzkZJkHV9lChoBmgJaA9DCDBHj9/bdPu/lIaUUpRoFUsyaBZHQJ4CjGxUvPF1fZQoaAZoCWgPQwh2cRsN4G32v5SGlFKUaBVLMmgWR0CeAgdxyXD4dX2UKGgGaAloD0MImBb1Se6w/7+UhpRSlGgVSzJoFkdAngX++dsi0XV9lChoBmgJaA9DCI20VN6OsPe/lIaUUpRoFUsyaBZHQJ4FfjU/fO51fZQoaAZoCWgPQwgkXp7OFSX2v5SGlFKUaBVLMmgWR0CeBPk8RtgsdX2UKGgGaAloD0MIDmd+NQcI77+UhpRSlGgVSzJoFkdAngR1UlzEJnV9lChoBmgJaA9DCKn7AKQ28fC/lIaUUpRoFUsyaBZHQJ4IWfg75mB1fZQoaAZoCWgPQwiJmujzUcbzv5SGlFKUaBVLMmgWR0CeB9gg5imVdX2UKGgGaAloD0MI8wGBzqTNBMCUhpRSlGgVSzJoFkdAngdR1oxpL3V9lChoBmgJaA9DCAK7mjxldfm/lIaUUpRoFUsyaBZHQJ4GzPrv9cd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16842, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -11.564059353247284, "std_reward": 4.609008218295034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-19T20:57:16.559751"}
 
1
+ {"mean_reward": -1.6013883981853723, "std_reward": 0.6626591705956062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-19T22:29:17.808398"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84bf05bec9f23b59bb6b6a4771e1f120600580fd9c16ef0ccf5bc521146b928d
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7576a14a336a9bc66f7a5d2a6e4ff8b02c2517f3f572fcdecb6c627ea8084f3
3
  size 2387