mohamed20-AI/model_title
Browse files- README.md +56 -54
- config_sentence_transformers.json +2 -2
README.md
CHANGED
@@ -10,36 +10,37 @@ tags:
|
|
10 |
- loss:CoSENTLoss
|
11 |
base_model: abdeljalilELmajjodi/model
|
12 |
widget:
|
13 |
-
- source_sentence: Woman in white in foreground and a man slightly behind walking
|
14 |
-
with a sign for John's Pizza and Gyro in the background.
|
15 |
-
sentences:
|
16 |
-
- They are walking with a sign.
|
17 |
-
- A married couple is sleeping.
|
18 |
-
- There are children present
|
19 |
-
- source_sentence: Woman in white in foreground and a man slightly behind walking
|
20 |
-
with a sign for John's Pizza and Gyro in the background.
|
21 |
-
sentences:
|
22 |
-
- A child with mom and dad, on summer vacation at the beach.
|
23 |
-
- A person is outdoors, on a horse.
|
24 |
-
- The woman is wearing white.
|
25 |
- source_sentence: Two adults, one female in white, with shades and one male, gray
|
26 |
clothes, walking across a street, away from a eatery with a blurred image of a
|
27 |
dark colored red shirted person in the foreground.
|
28 |
sentences:
|
29 |
-
- Two
|
30 |
-
-
|
31 |
-
-
|
32 |
-
- source_sentence:
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
sentences:
|
35 |
-
-
|
36 |
-
-
|
37 |
-
-
|
38 |
-
- source_sentence:
|
|
|
39 |
sentences:
|
40 |
-
-
|
41 |
-
-
|
42 |
-
- A
|
43 |
datasets:
|
44 |
- sentence-transformers/all-nli
|
45 |
pipeline_tag: sentence-similarity
|
@@ -58,10 +59,10 @@ model-index:
|
|
58 |
type: pair-score-evaluator-dev
|
59 |
metrics:
|
60 |
- type: pearson_cosine
|
61 |
-
value: 0.
|
62 |
name: Pearson Cosine
|
63 |
- type: spearman_cosine
|
64 |
-
value: 0.
|
65 |
name: Spearman Cosine
|
66 |
---
|
67 |
|
@@ -115,9 +116,9 @@ from sentence_transformers import SentenceTransformer
|
|
115 |
model = SentenceTransformer("sentence_transformers_model_id")
|
116 |
# Run inference
|
117 |
sentences = [
|
118 |
-
'
|
119 |
-
'A
|
120 |
-
'
|
121 |
]
|
122 |
embeddings = model.encode(sentences)
|
123 |
print(embeddings.shape)
|
@@ -164,8 +165,8 @@ You can finetune this model on your own dataset.
|
|
164 |
|
165 |
| Metric | Value |
|
166 |
|:--------------------|:-----------|
|
167 |
-
| pearson_cosine | 0.
|
168 |
-
| **spearman_cosine** |
|
169 |
|
170 |
<!--
|
171 |
## Bias, Risks and Limitations
|
@@ -189,16 +190,16 @@ You can finetune this model on your own dataset.
|
|
189 |
* Size: 80 training samples
|
190 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
191 |
* Approximate statistics based on the first 80 samples:
|
192 |
-
| | sentence1 | sentence2
|
193 |
-
|
194 |
-
| type | string | string
|
195 |
-
| details | <ul><li>min: 10 tokens</li><li>mean:
|
196 |
* Samples:
|
197 |
-
| sentence1
|
198 |
-
|
199 |
-
| <code>Two
|
200 |
-
| <code>A
|
201 |
-
| <code>
|
202 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
203 |
```json
|
204 |
{
|
@@ -215,16 +216,16 @@ You can finetune this model on your own dataset.
|
|
215 |
* Size: 20 evaluation samples
|
216 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
217 |
* Approximate statistics based on the first 20 samples:
|
218 |
-
| | sentence1
|
219 |
-
|
220 |
-
| type | string
|
221 |
-
| details | <ul><li>min: 10 tokens</li><li>mean:
|
222 |
* Samples:
|
223 |
-
| sentence1
|
224 |
-
|
225 |
-
| <code>
|
226 |
-
| <code>
|
227 |
-
| <code>A couple playing with a little boy on the beach.</code>
|
228 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
229 |
```json
|
230 |
{
|
@@ -310,6 +311,7 @@ You can finetune this model on your own dataset.
|
|
310 |
- `fsdp`: []
|
311 |
- `fsdp_min_num_params`: 0
|
312 |
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
|
313 |
- `fsdp_transformer_layer_cls_to_wrap`: None
|
314 |
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
315 |
- `deepspeed`: None
|
@@ -367,17 +369,17 @@ You can finetune this model on your own dataset.
|
|
367 |
### Training Logs
|
368 |
| Epoch | Step | Training Loss | Validation Loss | pair-score-evaluator-dev_spearman_cosine |
|
369 |
|:-------:|:------:|:-------------:|:---------------:|:----------------------------------------:|
|
370 |
-
| 0.1 | 1 |
|
371 |
-
| 0.5 | 5 |
|
372 |
-
| **1.0** | **10** | **3.
|
373 |
|
374 |
* The bold row denotes the saved checkpoint.
|
375 |
|
376 |
### Framework Versions
|
377 |
- Python: 3.11.12
|
378 |
- Sentence Transformers: 4.1.0
|
379 |
-
- Transformers: 4.
|
380 |
-
- PyTorch: 2.
|
381 |
- Accelerate: 1.6.0
|
382 |
- Datasets: 3.6.0
|
383 |
- Tokenizers: 0.21.1
|
|
|
10 |
- loss:CoSENTLoss
|
11 |
base_model: abdeljalilELmajjodi/model
|
12 |
widget:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- source_sentence: Two adults, one female in white, with shades and one male, gray
|
14 |
clothes, walking across a street, away from a eatery with a blurred image of a
|
15 |
dark colored red shirted person in the foreground.
|
16 |
sentences:
|
17 |
+
- Two people ride bicycles into a tunnel.
|
18 |
+
- There are people just getting on a train
|
19 |
+
- There are children present
|
20 |
+
- source_sentence: A man with blond-hair, and a brown shirt drinking out of a public
|
21 |
+
water fountain.
|
22 |
+
sentences:
|
23 |
+
- Some women are hugging on vacation.
|
24 |
+
- The family is sitting down for dinner.
|
25 |
+
- A blond man wearing a brown shirt is reading a book on a bench in the park
|
26 |
+
- source_sentence: Two women who just had lunch hugging and saying goodbye.
|
27 |
+
sentences:
|
28 |
+
- There are two woman in this picture.
|
29 |
+
- Two adults run across the street to get away from a red shirted person chasing
|
30 |
+
them.
|
31 |
+
- The woman is wearing black.
|
32 |
+
- source_sentence: A woman in a green jacket and hood over her head looking towards
|
33 |
+
a valley.
|
34 |
sentences:
|
35 |
+
- The woman is wearing green.
|
36 |
+
- A woman in white.
|
37 |
+
- A man is drinking juice.
|
38 |
+
- source_sentence: An older man sits with his orange juice at a small table in a coffee
|
39 |
+
shop while employees in bright colored shirts smile in the background.
|
40 |
sentences:
|
41 |
+
- They are protesting outside the capital.
|
42 |
+
- A couple are playing frisbee with a young child at the beach.
|
43 |
+
- A boy flips a burger.
|
44 |
datasets:
|
45 |
- sentence-transformers/all-nli
|
46 |
pipeline_tag: sentence-similarity
|
|
|
59 |
type: pair-score-evaluator-dev
|
60 |
metrics:
|
61 |
- type: pearson_cosine
|
62 |
+
value: -0.12381534704198764
|
63 |
name: Pearson Cosine
|
64 |
- type: spearman_cosine
|
65 |
+
value: -0.06398099132915955
|
66 |
name: Spearman Cosine
|
67 |
---
|
68 |
|
|
|
116 |
model = SentenceTransformer("sentence_transformers_model_id")
|
117 |
# Run inference
|
118 |
sentences = [
|
119 |
+
'An older man sits with his orange juice at a small table in a coffee shop while employees in bright colored shirts smile in the background.',
|
120 |
+
'A boy flips a burger.',
|
121 |
+
'They are protesting outside the capital.',
|
122 |
]
|
123 |
embeddings = model.encode(sentences)
|
124 |
print(embeddings.shape)
|
|
|
165 |
|
166 |
| Metric | Value |
|
167 |
|:--------------------|:-----------|
|
168 |
+
| pearson_cosine | -0.1238 |
|
169 |
+
| **spearman_cosine** | **-0.064** |
|
170 |
|
171 |
<!--
|
172 |
## Bias, Risks and Limitations
|
|
|
190 |
* Size: 80 training samples
|
191 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
192 |
* Approximate statistics based on the first 80 samples:
|
193 |
+
| | sentence1 | sentence2 | score |
|
194 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
195 |
+
| type | string | string | float |
|
196 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 25.34 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.2 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
197 |
* Samples:
|
198 |
+
| sentence1 | sentence2 | score |
|
199 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------|:-----------------|
|
200 |
+
| <code>Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground.</code> | <code>Some people board a train.</code> | <code>0.0</code> |
|
201 |
+
| <code>A few people in a restaurant setting, one of them is drinking orange juice.</code> | <code>The people are sitting at desks in school.</code> | <code>0.0</code> |
|
202 |
+
| <code>The school is having a special event in order to show the american culture on how other cultures are dealt with in parties.</code> | <code>A school hosts a basketball game.</code> | <code>0.0</code> |
|
203 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
204 |
```json
|
205 |
{
|
|
|
216 |
* Size: 20 evaluation samples
|
217 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
218 |
* Approximate statistics based on the first 20 samples:
|
219 |
+
| | sentence1 | sentence2 | score |
|
220 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
221 |
+
| type | string | string | float |
|
222 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 27.3 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.1 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
223 |
* Samples:
|
224 |
+
| sentence1 | sentence2 | score |
|
225 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:-----------------|
|
226 |
+
| <code>Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.</code> | <code>The woman is wearing black.</code> | <code>0.0</code> |
|
227 |
+
| <code>A couple play in the tide with their young son.</code> | <code>The family is sitting down for dinner.</code> | <code>0.0</code> |
|
228 |
+
| <code>A couple playing with a little boy on the beach.</code> | <code>A couple are playing frisbee with a young child at the beach.</code> | <code>0.5</code> |
|
229 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
230 |
```json
|
231 |
{
|
|
|
311 |
- `fsdp`: []
|
312 |
- `fsdp_min_num_params`: 0
|
313 |
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
314 |
+
- `tp_size`: 0
|
315 |
- `fsdp_transformer_layer_cls_to_wrap`: None
|
316 |
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
317 |
- `deepspeed`: None
|
|
|
369 |
### Training Logs
|
370 |
| Epoch | Step | Training Loss | Validation Loss | pair-score-evaluator-dev_spearman_cosine |
|
371 |
|:-------:|:------:|:-------------:|:---------------:|:----------------------------------------:|
|
372 |
+
| 0.1 | 1 | 3.0033 | - | - |
|
373 |
+
| 0.5 | 5 | 2.987 | - | - |
|
374 |
+
| **1.0** | **10** | **3.0908** | **2.6311** | **-0.064** |
|
375 |
|
376 |
* The bold row denotes the saved checkpoint.
|
377 |
|
378 |
### Framework Versions
|
379 |
- Python: 3.11.12
|
380 |
- Sentence Transformers: 4.1.0
|
381 |
+
- Transformers: 4.51.3
|
382 |
+
- PyTorch: 2.6.0+cu124
|
383 |
- Accelerate: 1.6.0
|
384 |
- Datasets: 3.6.0
|
385 |
- Tokenizers: 0.21.1
|
config_sentence_transformers.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "4.1.0",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|