File size: 1,689 Bytes
0e119af
36d3027
0e119af
 
36d3027
0e119af
 
 
36d3027
0e119af
 
 
 
 
 
36d3027
0e119af
 
 
0bc105d
 
0e119af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc105d
0e119af
 
36d3027
 
 
 
0bc105d
 
 
 
 
 
36d3027
 
0e119af
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: transformers
language:
- ur
base_model: cxfajar197/urdu-ocr
tags:
- generated_from_trainer
model-index:
- name: trocr for Urdu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trocr for Urdu

This model is a fine-tuned version of [cxfajar197/urdu-ocr](https://huggingface.co/cxfajar197/urdu-ocr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0120
- Cer: 0.2500

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4637        | 0.3188 | 1000 | 2.3244          | 0.3040 |
| 0.4822        | 0.6376 | 2000 | 2.2832          | 0.3015 |
| 0.5518        | 0.9563 | 3000 | 2.0469          | 0.2796 |
| 0.4168        | 1.2751 | 4000 | 2.1507          | 0.2900 |
| 0.375         | 1.5939 | 5000 | 2.0784          | 0.2744 |
| 0.3911        | 1.9127 | 6000 | 2.0120          | 0.2500 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0