File size: 20,065 Bytes
d62455e d1cac43 8ca490f d62455e 8ca490f d62455e 8ca490f d62455e 8ca490f d62455e 0abf9da d62455e 0abf9da d62455e 0abf9da d62455e 0abf9da d62455e 0abf9da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# -*- coding: utf-8 -*-
# This file contains all custom class definitions required to run the Interfuser model.
git clone https://github.com/opendilab/InterFuser.git
pip install timm
import sys
sys.path.append('/content/InterFuser')
import math
import copy
import logging
import sys
from collections import OrderedDict
from functools import partial
from typing import Optional, List
from huggingface_hub import HfApi
import numpy as np
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from InterFuser.modeling_interfuser import InterfuserConfig, InterfuserForHuggingFace
from huggingface_hub import notebook_login
# --- ูุฐู ูู ุงูุฃุณุทุฑ ุงูู
ูู
ุฉ ุงูุชู ูุฌุจ ุงูุชุฃูุฏ ู
ู ูุฌูุฏูุง ---
from InterFuser.interfuser.timm.models.layers import StdConv2dSame, StdConv2d, to_2tuple
from InterFuser.interfuser.timm.models.registry import register_model
from InterFuser.interfuser.timm.models.resnet import resnet26d, resnet50d, resnet18d, resnet26, resnet50, resnet101d
# --------------------------------------------------------
from transformers import AutoConfig, AutoModel
import os
# ==============================================================================
# SECTION 1: ALL DEPENDENCY CLASSES FROM THE ORIGINAL CODE
# ==============================================================================
class HybridEmbed(nn.Module):
def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
if isinstance(o, (list, tuple)):
o = o[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
if hasattr(self.backbone, "feature_info"):
feature_dim = self.backbone.feature_info.channels()[-1]
else:
feature_dim = self.backbone.num_features
self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=1, stride=1)
def forward(self, x):
x = self.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1]
x = self.proj(x)
global_x = torch.mean(x, [2, 3], keepdim=False)[:, :, None]
return x, global_x
class PositionEmbeddingSine(nn.Module):
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor):
x = tensor
bs, _, h, w = x.shape
not_mask = torch.ones((bs, h, w), device=x.device)
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=nn.ReLU(), normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = activation
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None):
output = src
for layer in self.layers:
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=nn.ReLU(), normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = activation
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None):
output = tgt
for layer in self.layers:
output = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos)
if self.norm is not None:
output = self.norm(output)
return output.unsqueeze(0)
class GRUWaypointsPredictor(nn.Module):
def __init__(self, input_dim, waypoints=10):
super().__init__()
self.gru = torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True)
self.encoder = nn.Linear(2, 64)
self.decoder = nn.Linear(64, 2)
self.waypoints = waypoints
def forward(self, x, target_point):
bs = x.shape[0]
z = self.encoder(target_point).unsqueeze(0)
output, _ = self.gru(x, z)
output = output.reshape(bs * self.waypoints, -1)
output = self.decoder(output).reshape(bs, self.waypoints, 2)
output = torch.cumsum(output, 1)
return output
# ... (Add other dependency classes like SpatialSoftmax, MultiPath_Generator, etc. if needed by other configs)
# --- The ORIGINAL Interfuser Model Class ---
class Interfuser(nn.Module):
def __init__(self, img_size=224,
multi_view_img_size=112,
patch_size=8, in_chans=3,
embed_dim=768,
enc_depth=6,
dec_depth=6,
dim_feedforward=2048,
normalize_before=False,
rgb_backbone_name="r26",
lidar_backbone_name="r26",
num_heads=8, norm_layer=None,
dropout=0.1, end2end=False,
direct_concat=True,
separate_view_attention=False,
separate_all_attention=False,
act_layer=None,
weight_init="",
freeze_num=-1,
with_lidar=False,
with_right_left_sensors=True,
with_center_sensor=False,
traffic_pred_head_type="det",
waypoints_pred_head="heatmap",
reverse_pos=True,
use_different_backbone=False,
use_view_embed=True,
use_mmad_pretrain=None):
super().__init__()
self.num_features = self.embed_dim = embed_dim
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.waypoints_pred_head = waypoints_pred_head
self.with_lidar = with_lidar
self.with_right_left_sensors = with_right_left_sensors
self.attn_mask = None # Simplified
if use_different_backbone:
if rgb_backbone_name == "r50": self.rgb_backbone = resnet50d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])
if rgb_backbone_name == "r26": self.rgb_backbone = resnet26d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])
if lidar_backbone_name == "r18": self.lidar_backbone = resnet18d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])
rgb_embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
lidar_embed_layer = partial(HybridEmbed, backbone=self.lidar_backbone)
self.rgb_patch_embed = rgb_embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
self.lidar_patch_embed = lidar_embed_layer(img_size=img_size, patch_size=patch_size, in_chans=3, embed_dim=embed_dim)
else: raise NotImplementedError("Only use_different_backbone=True supported in this wrapper")
self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11))
self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))
if self.waypoints_pred_head == "gru": self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
else: raise NotImplementedError("Only GRU waypoints head supported in this wrapper")
self.junction_pred_head = nn.Linear(embed_dim, 2)
self.traffic_light_pred_head = nn.Linear(embed_dim, 2)
self.stop_sign_head = nn.Linear(embed_dim, 2)
self.traffic_pred_head = nn.Sequential(*[nn.Linear(embed_dim + 32, 64), nn.ReLU(), nn.Linear(64, 7), nn.Sigmoid()])
self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)
encoder_layer = TransformerEncoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before)
self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
decoder_layer = TransformerDecoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before)
decoder_norm = nn.LayerNorm(embed_dim)
self.decoder = TransformerDecoder(decoder_layer, dec_depth, decoder_norm, return_intermediate=False)
def forward_features(self, front_image, left_image, right_image, front_center_image, lidar, measurements):
features = []
front_image_token, front_image_token_global = self.rgb_patch_embed(front_image)
front_image_token = (front_image_token + self.position_encoding(front_image_token))
front_image_token = front_image_token.flatten(2).permute(2, 0, 1)
front_image_token_global = (front_image_token_global + self.global_embed[:, :, 0:1])
front_image_token_global = front_image_token_global.permute(2, 0, 1)
features.extend([front_image_token, front_image_token_global])
left_image_token, left_image_token_global = self.rgb_patch_embed(left_image)
left_image_token = (left_image_token + self.position_encoding(left_image_token)).flatten(2).permute(2, 0, 1)
left_image_token_global = (left_image_token_global + self.global_embed[:, :, 1:2]).permute(2, 0, 1)
right_image_token, right_image_token_global = self.rgb_patch_embed(right_image)
right_image_token = (right_image_token + self.position_encoding(right_image_token)).flatten(2).permute(2, 0, 1)
right_image_token_global = (right_image_token_global + self.global_embed[:, :, 2:3]).permute(2, 0, 1)
features.extend([left_image_token, left_image_token_global, right_image_token, right_image_token_global])
return torch.cat(features, 0)
def forward(self, x):
front_image, left_image, right_image = x["rgb"], x["rgb_left"], x["rgb_right"]
measurements, target_point = x["measurements"], x["target_point"]
features = self.forward_features(front_image, left_image, right_image, x["rgb_center"], x["lidar"], measurements)
bs = front_image.shape[0]
tgt = self.position_encoding(torch.ones((bs, 1, 20, 20), device=x["rgb"].device)).flatten(2)
tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2).permute(2, 0, 1)
memory = self.encoder(features, mask=self.attn_mask)
hs = self.decoder(self.query_embed.repeat(1, bs, 1), memory, query_pos=tgt)[0].permute(1, 0, 2)
traffic_feature = hs[:, :400]
waypoints_feature = hs[:, 401:411]
is_junction_feature = hs[:, 400]
traffic_light_state_feature, stop_sign_feature = hs[:, 400], hs[:, 400]
waypoints = self.waypoints_generator(waypoints_feature, target_point)
is_junction = self.junction_pred_head(is_junction_feature)
traffic_light_state = self.traffic_light_pred_head(traffic_light_state_feature)
stop_sign = self.stop_sign_head(stop_sign_feature)
velocity = measurements[:, 6:7].unsqueeze(-1).repeat(1, 400, 32)
traffic_feature_with_vel = torch.cat([traffic_feature, velocity], dim=2)
traffic = self.traffic_pred_head(traffic_feature_with_vel)
return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature
# ==============================================================================
# SECTION 2: HUGGING FACE WRAPPER CLASSES
# ==============================================================================
# ==============================================================================
# ุฃุถู ูุฐุง ุงูููุฏ ูู ููุงูุฉ ุฎููุฉ ุชุนุฑูู ุงููู
ูุฐุฌ ุงูุฃุตูู
# ==============================================================================
print("
--- Defining Hugging Face compatible wrapper classes ---")
# --- 2. ูุฆุฉ ุงููู
ูุฐุฌ ุงูู
ุชูุงููุฉ (HF-Compatible Model Class) ---
class InterfuserConfig(PretrainedConfig):
model_type = "interfuser"
def __init__(
self,
embed_dim=256,
enc_depth=6,
dec_depth=6,
num_heads=8,
dim_feedforward=2048,
rgb_backbone_name="r50",
lidar_backbone_name="r18",
waypoints_pred_head="gru",
use_different_backbone=True,
**kwargs
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.enc_depth = enc_depth
self.dec_depth = dec_depth
self.num_heads = num_heads
self.dim_feedforward = dim_feedforward
self.rgb_backbone_name = rgb_backbone_name
self.lidar_backbone_name = lidar_backbone_name
self.waypoints_pred_head = waypoints_pred_head
self.use_different_backbone = use_different_backbone
# Add the architectures key for auto-mapping
self.architectures = ["InterfuserForHuggingFace"]
# --- 2. ูุฆุฉ ุงููู
ูุฐุฌ ุงูู
ุชูุงููุฉ (HF-Compatible Model Class) ---
# ูุฐู ูู ุงููุณุฎุฉ ุงูุฌุฏูุฏุฉ ู
ู ูู
ูุฐุฌู ุงูุชู ุชุฑุซ ู
ู PreTrainedModel
class InterfuserForHuggingFace(PreTrainedModel):
config_class = InterfuserConfig # Link to the config class
def __init__(self, config: InterfuserConfig):
super().__init__(config)
self.config = config
# We instantiate the original Interfuser model inside our wrapper
# The parameters are taken from our config object.
# This requires the original 'Interfuser' class to be defined in the notebook.
self.interfuser_model = Interfuser(
in_chans=self.config.in_chans, # ููุง ุชูู
ุฑูุฑ ุงูููู
ู
embed_dim=self.config.embed_dim,
enc_depth=self.config.enc_depth,
dec_depth=self.config.dec_depth,
num_heads=self.config.num_heads,
dim_feedforward=self.config.dim_feedforward,
rgb_backbone_name=self.config.rgb_backbone_name,
lidar_backbone_name=self.config.lidar_backbone_name,
waypoints_pred_head=self.config.waypoints_pred_head,
use_different_backbone=self.config.use_different_backbone
)
def forward(self, rgb, rgb_left, rgb_right, rgb_center, lidar, measurements, target_point, **kwargs):
# The original model expects a dictionary, so we create one.
inputs_dict = {
'rgb': rgb,
'rgb_left': rgb_left,
'rgb_right': rgb_right,
'rgb_center': rgb_center,
'lidar': lidar,
'measurements': measurements,
'target_point': target_point
}
# Call the forward method of the original model
# The output is already a tuple, which is what HF expects.
return self.interfuser_model.forward(inputs_dict)
|