File size: 20,065 Bytes
d62455e
 
 
d1cac43
 
8ca490f
 
d62455e
 
8ca490f
 
 
 
d62455e
8ca490f
d62455e
8ca490f
 
 
 
 
 
 
 
 
 
 
 
 
d62455e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0abf9da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d62455e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0abf9da
 
d62455e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0abf9da
d62455e
 
 
 
 
 
 
 
 
 
0abf9da
d62455e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0abf9da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

# -*- coding: utf-8 -*-
# This file contains all custom class definitions required to run the Interfuser model.
git clone https://github.com/opendilab/InterFuser.git
pip install timm
import sys
sys.path.append('/content/InterFuser')
import math
import copy
import logging
import sys
from collections import OrderedDict
from functools import partial
from typing import Optional, List
from huggingface_hub import HfApi

import numpy as np
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from InterFuser.modeling_interfuser import InterfuserConfig, InterfuserForHuggingFace
from huggingface_hub import notebook_login
# --- ู‡ุฐู‡ ู‡ูŠ ุงู„ุฃุณุทุฑ ุงู„ู…ู‡ู…ุฉ ุงู„ุชูŠ ูŠุฌุจ ุงู„ุชุฃูƒุฏ ู…ู† ูˆุฌูˆุฏู‡ุง ---
from InterFuser.interfuser.timm.models.layers import StdConv2dSame, StdConv2d, to_2tuple
from InterFuser.interfuser.timm.models.registry import register_model
from InterFuser.interfuser.timm.models.resnet import resnet26d, resnet50d, resnet18d, resnet26, resnet50, resnet101d
# --------------------------------------------------------
from transformers import AutoConfig, AutoModel
import os

# ==============================================================================
# SECTION 1: ALL DEPENDENCY CLASSES FROM THE ORIGINAL CODE
# ==============================================================================

class HybridEmbed(nn.Module):
    def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            if hasattr(self.backbone, "feature_info"):
                feature_dim = self.backbone.feature_info.channels()[-1]
            else:
                feature_dim = self.backbone.num_features
        self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=1, stride=1)

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]
        x = self.proj(x)
        global_x = torch.mean(x, [2, 3], keepdim=False)[:, :, None]
        return x, global_x

class PositionEmbeddingSine(nn.Module):
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor):
        x = tensor
        bs, _, h, w = x.shape
        not_mask = torch.ones((bs, h, w), device=x.device)
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos

def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

class TransformerEncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=nn.ReLU(), normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.activation = activation
        self.normalize_before = normalize_before
    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos
    def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

class TransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers, norm=None):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
    def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None):
        output = src
        for layer in self.layers:
            output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
        if self.norm is not None:
            output = self.norm(output)
        return output

class TransformerDecoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=nn.ReLU(), normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)
        self.activation = activation
        self.normalize_before = normalize_before
    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos
    def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

class TransformerDecoder(nn.Module):
    def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate
    def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None):
        output = tgt
        for layer in self.layers:
            output = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos)
        if self.norm is not None:
            output = self.norm(output)
        return output.unsqueeze(0)

class GRUWaypointsPredictor(nn.Module):
    def __init__(self, input_dim, waypoints=10):
        super().__init__()
        self.gru = torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True)
        self.encoder = nn.Linear(2, 64)
        self.decoder = nn.Linear(64, 2)
        self.waypoints = waypoints
    def forward(self, x, target_point):
        bs = x.shape[0]
        z = self.encoder(target_point).unsqueeze(0)
        output, _ = self.gru(x, z)
        output = output.reshape(bs * self.waypoints, -1)
        output = self.decoder(output).reshape(bs, self.waypoints, 2)
        output = torch.cumsum(output, 1)
        return output

# ... (Add other dependency classes like SpatialSoftmax, MultiPath_Generator, etc. if needed by other configs)

# --- The ORIGINAL Interfuser Model Class ---
class Interfuser(nn.Module):
    def __init__(self, img_size=224,
     multi_view_img_size=112,
      patch_size=8, in_chans=3,
       embed_dim=768, 
       enc_depth=6, 
       dec_depth=6, 
       dim_feedforward=2048, 
       normalize_before=False, 
       rgb_backbone_name="r26", 
       lidar_backbone_name="r26", 
       num_heads=8, norm_layer=None, 
       dropout=0.1, end2end=False, 
       direct_concat=True,
       separate_view_attention=False,
       separate_all_attention=False, 
       act_layer=None,
       weight_init="", 
       freeze_num=-1,
       with_lidar=False, 
       with_right_left_sensors=True,
       with_center_sensor=False, 
       traffic_pred_head_type="det",
       waypoints_pred_head="heatmap",
       reverse_pos=True,
       use_different_backbone=False,
       use_view_embed=True,
       use_mmad_pretrain=None):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.waypoints_pred_head = waypoints_pred_head
        self.with_lidar = with_lidar
        self.with_right_left_sensors = with_right_left_sensors
        self.attn_mask = None # Simplified

        if use_different_backbone:
            if rgb_backbone_name == "r50": self.rgb_backbone = resnet50d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])
            if rgb_backbone_name == "r26": self.rgb_backbone = resnet26d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])
            if lidar_backbone_name == "r18": self.lidar_backbone = resnet18d(pretrained=False, in_chans=3, features_only=True, out_indices=[4])

            rgb_embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
            lidar_embed_layer = partial(HybridEmbed, backbone=self.lidar_backbone)
            self.rgb_patch_embed = rgb_embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
            self.lidar_patch_embed = lidar_embed_layer(img_size=img_size, patch_size=patch_size, in_chans=3, embed_dim=embed_dim)
        else: raise NotImplementedError("Only use_different_backbone=True supported in this wrapper")

        self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
        self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
        self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11))
        self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))

        if self.waypoints_pred_head == "gru": self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
        else: raise NotImplementedError("Only GRU waypoints head supported in this wrapper")

        self.junction_pred_head = nn.Linear(embed_dim, 2)
        self.traffic_light_pred_head = nn.Linear(embed_dim, 2)
        self.stop_sign_head = nn.Linear(embed_dim, 2)
        self.traffic_pred_head = nn.Sequential(*[nn.Linear(embed_dim + 32, 64), nn.ReLU(), nn.Linear(64, 7), nn.Sigmoid()])
        self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)

        encoder_layer = TransformerEncoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before)
        self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
        decoder_layer = TransformerDecoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before)
        decoder_norm = nn.LayerNorm(embed_dim)
        self.decoder = TransformerDecoder(decoder_layer, dec_depth, decoder_norm, return_intermediate=False)

    def forward_features(self, front_image, left_image, right_image, front_center_image, lidar, measurements):
        features = []
        front_image_token, front_image_token_global = self.rgb_patch_embed(front_image)
        front_image_token = (front_image_token + self.position_encoding(front_image_token))
        front_image_token = front_image_token.flatten(2).permute(2, 0, 1)
        front_image_token_global = (front_image_token_global + self.global_embed[:, :, 0:1])
        front_image_token_global = front_image_token_global.permute(2, 0, 1)
        features.extend([front_image_token, front_image_token_global])
        left_image_token, left_image_token_global = self.rgb_patch_embed(left_image)
        left_image_token = (left_image_token + self.position_encoding(left_image_token)).flatten(2).permute(2, 0, 1)
        left_image_token_global = (left_image_token_global + self.global_embed[:, :, 1:2]).permute(2, 0, 1)
        right_image_token, right_image_token_global = self.rgb_patch_embed(right_image)
        right_image_token = (right_image_token + self.position_encoding(right_image_token)).flatten(2).permute(2, 0, 1)
        right_image_token_global = (right_image_token_global + self.global_embed[:, :, 2:3]).permute(2, 0, 1)
        features.extend([left_image_token, left_image_token_global, right_image_token, right_image_token_global])
        return torch.cat(features, 0)

    def forward(self, x):
        front_image, left_image, right_image = x["rgb"], x["rgb_left"], x["rgb_right"]
        measurements, target_point = x["measurements"], x["target_point"]
        features = self.forward_features(front_image, left_image, right_image, x["rgb_center"], x["lidar"], measurements)
        bs = front_image.shape[0]
        tgt = self.position_encoding(torch.ones((bs, 1, 20, 20), device=x["rgb"].device)).flatten(2)
        tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2).permute(2, 0, 1)
        memory = self.encoder(features, mask=self.attn_mask)
        hs = self.decoder(self.query_embed.repeat(1, bs, 1), memory, query_pos=tgt)[0].permute(1, 0, 2)
        traffic_feature = hs[:, :400]
        waypoints_feature = hs[:, 401:411]
        is_junction_feature = hs[:, 400]
        traffic_light_state_feature, stop_sign_feature = hs[:, 400], hs[:, 400]
        waypoints = self.waypoints_generator(waypoints_feature, target_point)
        is_junction = self.junction_pred_head(is_junction_feature)
        traffic_light_state = self.traffic_light_pred_head(traffic_light_state_feature)
        stop_sign = self.stop_sign_head(stop_sign_feature)
        velocity = measurements[:, 6:7].unsqueeze(-1).repeat(1, 400, 32)
        traffic_feature_with_vel = torch.cat([traffic_feature, velocity], dim=2)
        traffic = self.traffic_pred_head(traffic_feature_with_vel)
        return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature

# ==============================================================================
# SECTION 2: HUGGING FACE WRAPPER CLASSES
# ==============================================================================
# ==============================================================================
# ุฃุถู ู‡ุฐุง ุงู„ูƒูˆุฏ ููŠ ู†ู‡ุงูŠุฉ ุฎู„ูŠุฉ ุชุนุฑูŠู ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฃุตู„ูŠ
# ==============================================================================

print("
--- Defining Hugging Face compatible wrapper classes ---")


# --- 2. ูุฆุฉ ุงู„ู†ู…ูˆุฐุฌ ุงู„ู…ุชูˆุงูู‚ุฉ (HF-Compatible Model Class) ---
class InterfuserConfig(PretrainedConfig):

    model_type = "interfuser"



    def __init__(
        self,
        embed_dim=256,
        enc_depth=6,
        dec_depth=6,
        num_heads=8,
        dim_feedforward=2048,
        rgb_backbone_name="r50",
        lidar_backbone_name="r18",
        waypoints_pred_head="gru",
        use_different_backbone=True,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.enc_depth = enc_depth
        self.dec_depth = dec_depth
        self.num_heads = num_heads
        self.dim_feedforward = dim_feedforward
        self.rgb_backbone_name = rgb_backbone_name
        self.lidar_backbone_name = lidar_backbone_name
        self.waypoints_pred_head = waypoints_pred_head
        self.use_different_backbone = use_different_backbone
        # Add the architectures key for auto-mapping
        self.architectures = ["InterfuserForHuggingFace"]


# --- 2. ูุฆุฉ ุงู„ู†ู…ูˆุฐุฌ ุงู„ู…ุชูˆุงูู‚ุฉ (HF-Compatible Model Class) ---
# ู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุณุฎุฉ ุงู„ุฌุฏูŠุฏุฉ ู…ู† ู†ู…ูˆุฐุฌูƒ ุงู„ุชูŠ ุชุฑุซ ู…ู† PreTrainedModel
class InterfuserForHuggingFace(PreTrainedModel):

    config_class = InterfuserConfig # Link to the config class

    def __init__(self, config: InterfuserConfig):
        super().__init__(config)
        self.config = config

        # We instantiate the original Interfuser model inside our wrapper
        # The parameters are taken from our config object.
        # This requires the original 'Interfuser' class to be defined in the notebook.
        self.interfuser_model = Interfuser(
            in_chans=self.config.in_chans,  # ู‡ู†ุง ุชูู…ุฑู‘ุฑ ุงู„ู‚ูŠู…ู‡
            embed_dim=self.config.embed_dim,
            enc_depth=self.config.enc_depth,
            dec_depth=self.config.dec_depth,
            num_heads=self.config.num_heads,
            dim_feedforward=self.config.dim_feedforward,
            rgb_backbone_name=self.config.rgb_backbone_name,
            lidar_backbone_name=self.config.lidar_backbone_name,
            waypoints_pred_head=self.config.waypoints_pred_head,
            use_different_backbone=self.config.use_different_backbone
        )
        
    def forward(self, rgb, rgb_left, rgb_right, rgb_center, lidar, measurements, target_point, **kwargs):
    
        # The original model expects a dictionary, so we create one.
        inputs_dict = {
            'rgb': rgb,
            'rgb_left': rgb_left,
            'rgb_right': rgb_right,
            'rgb_center': rgb_center,
            'lidar': lidar,
            'measurements': measurements,
            'target_point': target_point
        }

        # Call the forward method of the original model
        # The output is already a tuple, which is what HF expects.
        return self.interfuser_model.forward(inputs_dict)