mohannad-tazi commited on
Commit
974a64e
1 Parent(s): a70bda1

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Model Name: Your Model's Name
3
+
4
+ ## Model Description
5
+ This model is a **Named Entity Recognition (NER)** model fine-tuned on the **CoNLL-03** dataset. It is designed to recognize **person**, **organization**, and **location** entities in English text. The model is based on the **BERT architecture** and is useful for information extraction tasks, such as named entity recognition in documents, web scraping, or chatbots.
6
+
7
+ ### Model Architecture
8
+ - **Architecture**: BERT-based model for token classification
9
+ - **Pre-trained Model**: BERT
10
+ - **Fine-tuning Dataset**: CoNLL-03
11
+ - **Languages**: English
12
+
13
+ ## Intended Use
14
+ This model is designed for Named Entity Recognition tasks. It can identify and classify entities such as:
15
+ - **Person**: People’s names (e.g., "Elon Musk")
16
+ - **Organization**: Company or organization names (e.g., "Tesla", "Bank of America")
17
+ - **Location**: Geographical locations (e.g., "New York", "Paris")
18
+
19
+ ### Use Cases
20
+ - **Document classification**: Classifying text into named entity categories.
21
+ - **Information extraction**: Extracting entities from a large corpus of text.
22
+ - **Chatbots**: Enhance chatbots by identifying named entities within user queries.
23
+ - **Named entity linking**: Link entities to a knowledge base.
24
+
25
+ ## How to Use
26
+ To use the model, you need to load the tokenizer and model with the `transformers` library. Here's an example of how to do that:
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
30
+
31
+ # Load the tokenizer and model
32
+ tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
33
+ model = AutoModelForTokenClassification.from_pretrained("your-username/your-model-name")
34
+
35
+ # Initialize the NER pipeline
36
+ ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
37
+
38
+ # Use the model to predict named entities in a text
39
+ result = ner_pipeline("Elon Musk is the CEO of Tesla and lives in California.")
40
+ print(result)
41
+
42
+ # Model Training Data
43
+ This model was trained on the CoNLL-03 dataset, which contains English text annotated with named entity labels. The dataset consists of:
44
+
45
+ Training set: 14,041 sentences
46
+ Validation set: 3,466 sentences
47
+ Test set: 3,684 sentences
48
+ The entities are labeled into three categories: Person, Organization, and Location.
49
+
50
+ # Preprocessing Steps
51
+ Tokenization using the BERT tokenizer.
52
+ Alignment of labels with tokenized inputs (considering word-piece tokens).
53
+ Padding and truncating sentences to a fixed length for uniformity.
54
+
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/kaggle/working/NER",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2",
15
+ "3": "LABEL_3",
16
+ "4": "LABEL_4",
17
+ "5": "LABEL_5",
18
+ "6": "LABEL_6",
19
+ "7": "LABEL_7",
20
+ "8": "LABEL_8",
21
+ "9": "LABEL_9"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "LABEL_0": 0,
27
+ "LABEL_1": 1,
28
+ "LABEL_2": 2,
29
+ "LABEL_3": 3,
30
+ "LABEL_4": 4,
31
+ "LABEL_5": 5,
32
+ "LABEL_6": 6,
33
+ "LABEL_7": 7,
34
+ "LABEL_8": 8,
35
+ "LABEL_9": 9
36
+ },
37
+ "layer_norm_eps": 1e-12,
38
+ "max_position_embeddings": 512,
39
+ "model_type": "bert",
40
+ "num_attention_heads": 12,
41
+ "num_hidden_layers": 12,
42
+ "pad_token_id": 0,
43
+ "position_embedding_type": "absolute",
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.44.2",
46
+ "type_vocab_size": 2,
47
+ "use_cache": true,
48
+ "vocab_size": 64000
49
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def59075e66a0fc9a86dc5c4af391bb89a1811dcff58bf73829897a280832756
3
+ size 538465128
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[رابط]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": true,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[بريد]",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": true,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[مستخدم]",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": true,
65
+ "special": true
66
+ }
67
+ },
68
+ "clean_up_tokenization_spaces": true,
69
+ "cls_token": "[CLS]",
70
+ "do_basic_tokenize": true,
71
+ "do_lower_case": false,
72
+ "mask_token": "[MASK]",
73
+ "max_len": 512,
74
+ "model_max_length": 512,
75
+ "never_split": [
76
+ "[بريد]",
77
+ "[مستخدم]",
78
+ "[رابط]"
79
+ ],
80
+ "pad_token": "[PAD]",
81
+ "sep_token": "[SEP]",
82
+ "strip_accents": null,
83
+ "tokenize_chinese_chars": true,
84
+ "tokenizer_class": "BertTokenizer",
85
+ "unk_token": "[UNK]"
86
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff