heartdisease / app.py
mohansathya's picture
Upload 3 files
3fdbadf
import gradio
import numpy as np
import pandas as pd
import joblib
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from xgboost import XGBClassifier
username = "mohansathya"
repo_name = "heartdisease"
save_file_name = "xgboost-model.pkl"
repo_path = username+ '/' + repo_name + '/' + save_file_name
xgb_loaded = joblib.load(repo_path)
demo = gr.Interface(
predict_death_event,
[
gr.Slider(40, 100, value=60, label="age", info="Choose between 40 and 100"),
gr.Radio(
["No", "Yes"], type = 'index', value='Yes', label="anaemia", info="is anemic"
),
gr.Slider(23, 1300, value=588, label="creatinine_phosphokinase", info="Choose between 23 and 1300"),
gr.Radio(
["No", "Yes"], type = 'index', value='Yes', label="diabetes", info="is diabetic"
),
gr.Slider(14, 70, value=60, label="ejection_fraction", info="Choose between 14 and 70"),
gr.Radio(
["No", "Yes"], type = 'index', value='No', label="high_blood_pressure", info="is hypertensive"
),
gr.Slider(70000, 450000, value=194000, label="platelets", info="Choose between 70000 and 450000"),
gr.Slider(0.5, 2.2, value=194000, label="serum_creatinine", info="Choose between 0.5 and 2.2"),
gr.Slider(120, 150, value=142, label="serum_sodium", info="Choose between 120 and 150"),
gr.Radio(
["No", "Yes"], type = 'index', value='No', label="Is woman", info="is woman"
),
gr.Radio(
["No", "Yes"], type = 'index', value='No', label="Is a smoker?", info="is smoker?"
),
gr.Slider(1, 300, value=33, label="follow-up period", info="Choose between 1 and 300 days")
],
"text",
examples=[
[6.00e+01, 'Yes', 5.88e+02, 'Yes', 6.00e+01, 'No',
1.94e+05, 1.10e+00, 1.42e+02, 'No', 'No', 3.30e+01],
[5.30e+01, 'Yes', 2.70e+02, 'Yes', 3.50e+01, 'No',
2.27e+05, 2.15e+00, 1.45e+02, 'Yes', 'No', 1.05e+02]
]
)
demo.launch(debug = True)