--- license: apache-2.0 base_model: HooshvareLab/bert-fa-base-uncased-sentiment-snappfood tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: my-snappfood-model results: [] --- # my-snappfood-model This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased-sentiment-snappfood](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2433 - Accuracy: 0.8613 - F1: 0.8613 - Precision: 0.8615 - Recall: 0.8613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2358 | 1.0 | 2363 | 0.3235 | 0.869 | 0.8690 | 0.8691 | 0.869 | | 0.1925 | 2.0 | 4726 | 0.3717 | 0.855 | 0.8550 | 0.8553 | 0.855 | | 0.1423 | 3.0 | 7089 | 0.5230 | 0.867 | 0.8669 | 0.8683 | 0.867 | | 0.1135 | 4.0 | 9452 | 0.6233 | 0.8691 | 0.8690 | 0.8709 | 0.8691 | | 0.0876 | 5.0 | 11815 | 0.7637 | 0.8636 | 0.8635 | 0.8644 | 0.8636 | | 0.063 | 6.0 | 14178 | 0.8685 | 0.8544 | 0.8544 | 0.8547 | 0.8544 | | 0.0435 | 7.0 | 16541 | 0.9789 | 0.8607 | 0.8606 | 0.8616 | 0.8607 | | 0.0279 | 8.0 | 18904 | 1.1560 | 0.8579 | 0.8578 | 0.8579 | 0.8579 | | 0.0184 | 9.0 | 21267 | 1.1904 | 0.8653 | 0.8652 | 0.8659 | 0.8653 | | 0.0092 | 10.0 | 23630 | 1.2433 | 0.8613 | 0.8613 | 0.8615 | 0.8613 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3