update dataset processing
Browse files- README.md +145 -0
- configs/metadata.json +2 -1
- docs/README.md +138 -0
- scripts/data_process.py +74 -0
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- monai
|
4 |
+
- medical
|
5 |
+
library_name: monai
|
6 |
+
license: apache-2.0
|
7 |
+
---
|
8 |
+
# Description
|
9 |
+
A pre-trained model for the endoscopic inbody classification task.
|
10 |
+
|
11 |
+
# Model Overview
|
12 |
+
This model is trained using the SEResNet50 structure, whose details can be found in [1]. All datasets are from private samples of [Activ Surgical](https://www.activsurgical.com/). Samples in training and validation dataset are from the same 4 videos, while test samples are from different two videos.
|
13 |
+
The [pytorch model](https://drive.google.com/file/d/14CS-s1uv2q6WedYQGeFbZeEWIkoyNa-x/view?usp=sharing) and [torchscript model](https://drive.google.com/file/d/1fOoJ4n5DWKHrt9QXTZ2sXwr9C-YvVGCM/view?usp=sharing) are shared in google drive. Modify the `bundle_root` parameter specified in `configs/train.json` and `configs/inference.json` to reflect where models are downloaded. Expected directory path to place downloaded models is `models/` under `bundle_root`.
|
14 |
+
|
15 |
+
## Data
|
16 |
+
Datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/). Here is a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like. After downloading this dataset, python script in `scripts` folder naming `data_process` can be used to get label json files by running the command below and replacing datapath and outpath parameters.
|
17 |
+
```
|
18 |
+
python scripts/data_process.py --datapath /path/to/data/root --outpath /path/to/label/folder
|
19 |
+
```
|
20 |
+
|
21 |
+
After generating label files, please modify the `dataset_dir` parameter specified in `configs/train.json` and `configs/inference.json` to reflect where label files are.
|
22 |
+
|
23 |
+
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
24 |
+
|
25 |
+
```
|
26 |
+
[
|
27 |
+
{
|
28 |
+
"image":"/path/to/image/image_name0.jpg",
|
29 |
+
"label": 0
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"image":"/path/to/image/image_name1.jpg",
|
33 |
+
"label": 0
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"image":"/path/to/image/image_name2.jpg",
|
37 |
+
"label": 1
|
38 |
+
},
|
39 |
+
....
|
40 |
+
{
|
41 |
+
"image":"/path/to/image/image_namek.jpg",
|
42 |
+
"label": 0
|
43 |
+
},
|
44 |
+
]
|
45 |
+
```
|
46 |
+
|
47 |
+
## Training configuration
|
48 |
+
The training was performed with an at least 12GB-memory GPU.
|
49 |
+
|
50 |
+
Actual Model Input: 256 x 256 x 3
|
51 |
+
|
52 |
+
## Input and output formats
|
53 |
+
Input: 3 channel video frames
|
54 |
+
|
55 |
+
Output: probability vector whose length equals to 2: Label 0: in body; Label 1: out body
|
56 |
+
|
57 |
+
## Scores
|
58 |
+
This model achieves the following accuracy score on the test dataset:
|
59 |
+
|
60 |
+
Accuracy = 0.98
|
61 |
+
|
62 |
+
## commands example
|
63 |
+
Execute training:
|
64 |
+
|
65 |
+
```
|
66 |
+
python -m monai.bundle run training \
|
67 |
+
--meta_file configs/metadata.json \
|
68 |
+
--config_file configs/train.json \
|
69 |
+
--logging_file configs/logging.conf
|
70 |
+
```
|
71 |
+
|
72 |
+
Override the `train` config to execute multi-GPU training:
|
73 |
+
|
74 |
+
```
|
75 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training \
|
76 |
+
--meta_file configs/metadata.json \
|
77 |
+
--config_file "['configs/train.json','configs/multi_gpu_train.json']" \
|
78 |
+
--logging_file configs/logging.conf
|
79 |
+
```
|
80 |
+
|
81 |
+
Please note that the distributed training related options depend on the actual running environment, thus you may need to remove `--standalone`, modify `--nnodes` or do some other necessary changes according to the machine you used.
|
82 |
+
Please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) for more details.
|
83 |
+
|
84 |
+
Override the `train` config to execute evaluation with the trained model:
|
85 |
+
|
86 |
+
```
|
87 |
+
python -m monai.bundle run evaluating \
|
88 |
+
--meta_file configs/metadata.json \
|
89 |
+
--config_file "['configs/train.json','configs/evaluate.json']" \
|
90 |
+
--logging_file configs/logging.conf
|
91 |
+
```
|
92 |
+
|
93 |
+
Execute inference:
|
94 |
+
|
95 |
+
```
|
96 |
+
python -m monai.bundle run evaluating \
|
97 |
+
--meta_file configs/metadata.json \
|
98 |
+
--config_file configs/inference.json \
|
99 |
+
--logging_file configs/logging.conf
|
100 |
+
```
|
101 |
+
|
102 |
+
Export checkpoint to TorchScript file:
|
103 |
+
|
104 |
+
```
|
105 |
+
python -m monai.bundle ckpt_export network_def \
|
106 |
+
--filepath models/model.ts \
|
107 |
+
--ckpt_file models/model.pt \
|
108 |
+
--meta_file configs/metadata.json \
|
109 |
+
--config_file configs/inference.json
|
110 |
+
```
|
111 |
+
|
112 |
+
Export checkpoint to onnx file, which has been tested on pytorch 1.12.0:
|
113 |
+
|
114 |
+
```
|
115 |
+
python scripts/export_to_onnx.py --model models/model.pt --outpath models/model.onnx
|
116 |
+
```
|
117 |
+
|
118 |
+
Export TensorRT float16 model from the onnx model:
|
119 |
+
|
120 |
+
```
|
121 |
+
trtexec --onnx=models/model.onnx --saveEngine=models/model.trt --fp16 \
|
122 |
+
--minShapes=INPUT__0:1x3x256x256 \
|
123 |
+
--optShapes=INPUT__0:16x3x256x256 \
|
124 |
+
--maxShapes=INPUT__0:32x3x256x256 \
|
125 |
+
--shapes=INPUT__0:8x3x256x256
|
126 |
+
```
|
127 |
+
This command need TensorRT with correct CUDA installed in the environment. For the detail of installing TensorRT, please refer to [this link](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html).
|
128 |
+
|
129 |
+
# References
|
130 |
+
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
131 |
+
|
132 |
+
# License
|
133 |
+
Copyright (c) MONAI Consortium
|
134 |
+
|
135 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
136 |
+
you may not use this file except in compliance with the License.
|
137 |
+
You may obtain a copy of the License at
|
138 |
+
|
139 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
140 |
+
|
141 |
+
Unless required by applicable law or agreed to in writing, software
|
142 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
143 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
144 |
+
See the License for the specific language governing permissions and
|
145 |
+
limitations under the License.
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.
|
4 |
"changelog": {
|
|
|
5 |
"0.2.2": "update to use monai 1.0.1",
|
6 |
"0.2.1": "enhance readme on commands example",
|
7 |
"0.2.0": "update license files",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.3.0",
|
4 |
"changelog": {
|
5 |
+
"0.3.0": "update dataset processing",
|
6 |
"0.2.2": "update to use monai 1.0.1",
|
7 |
"0.2.1": "enhance readme on commands example",
|
8 |
"0.2.0": "update license files",
|
docs/README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Description
|
2 |
+
A pre-trained model for the endoscopic inbody classification task.
|
3 |
+
|
4 |
+
# Model Overview
|
5 |
+
This model is trained using the SEResNet50 structure, whose details can be found in [1]. All datasets are from private samples of [Activ Surgical](https://www.activsurgical.com/). Samples in training and validation dataset are from the same 4 videos, while test samples are from different two videos.
|
6 |
+
The [pytorch model](https://drive.google.com/file/d/14CS-s1uv2q6WedYQGeFbZeEWIkoyNa-x/view?usp=sharing) and [torchscript model](https://drive.google.com/file/d/1fOoJ4n5DWKHrt9QXTZ2sXwr9C-YvVGCM/view?usp=sharing) are shared in google drive. Modify the `bundle_root` parameter specified in `configs/train.json` and `configs/inference.json` to reflect where models are downloaded. Expected directory path to place downloaded models is `models/` under `bundle_root`.
|
7 |
+
|
8 |
+
## Data
|
9 |
+
Datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/). Here is a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like. After downloading this dataset, python script in `scripts` folder naming `data_process` can be used to get label json files by running the command below and replacing datapath and outpath parameters.
|
10 |
+
```
|
11 |
+
python scripts/data_process.py --datapath /path/to/data/root --outpath /path/to/label/folder
|
12 |
+
```
|
13 |
+
|
14 |
+
After generating label files, please modify the `dataset_dir` parameter specified in `configs/train.json` and `configs/inference.json` to reflect where label files are.
|
15 |
+
|
16 |
+
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
17 |
+
|
18 |
+
```
|
19 |
+
[
|
20 |
+
{
|
21 |
+
"image":"/path/to/image/image_name0.jpg",
|
22 |
+
"label": 0
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"image":"/path/to/image/image_name1.jpg",
|
26 |
+
"label": 0
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"image":"/path/to/image/image_name2.jpg",
|
30 |
+
"label": 1
|
31 |
+
},
|
32 |
+
....
|
33 |
+
{
|
34 |
+
"image":"/path/to/image/image_namek.jpg",
|
35 |
+
"label": 0
|
36 |
+
},
|
37 |
+
]
|
38 |
+
```
|
39 |
+
|
40 |
+
## Training configuration
|
41 |
+
The training was performed with an at least 12GB-memory GPU.
|
42 |
+
|
43 |
+
Actual Model Input: 256 x 256 x 3
|
44 |
+
|
45 |
+
## Input and output formats
|
46 |
+
Input: 3 channel video frames
|
47 |
+
|
48 |
+
Output: probability vector whose length equals to 2: Label 0: in body; Label 1: out body
|
49 |
+
|
50 |
+
## Scores
|
51 |
+
This model achieves the following accuracy score on the test dataset:
|
52 |
+
|
53 |
+
Accuracy = 0.98
|
54 |
+
|
55 |
+
## commands example
|
56 |
+
Execute training:
|
57 |
+
|
58 |
+
```
|
59 |
+
python -m monai.bundle run training \
|
60 |
+
--meta_file configs/metadata.json \
|
61 |
+
--config_file configs/train.json \
|
62 |
+
--logging_file configs/logging.conf
|
63 |
+
```
|
64 |
+
|
65 |
+
Override the `train` config to execute multi-GPU training:
|
66 |
+
|
67 |
+
```
|
68 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training \
|
69 |
+
--meta_file configs/metadata.json \
|
70 |
+
--config_file "['configs/train.json','configs/multi_gpu_train.json']" \
|
71 |
+
--logging_file configs/logging.conf
|
72 |
+
```
|
73 |
+
|
74 |
+
Please note that the distributed training related options depend on the actual running environment, thus you may need to remove `--standalone`, modify `--nnodes` or do some other necessary changes according to the machine you used.
|
75 |
+
Please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) for more details.
|
76 |
+
|
77 |
+
Override the `train` config to execute evaluation with the trained model:
|
78 |
+
|
79 |
+
```
|
80 |
+
python -m monai.bundle run evaluating \
|
81 |
+
--meta_file configs/metadata.json \
|
82 |
+
--config_file "['configs/train.json','configs/evaluate.json']" \
|
83 |
+
--logging_file configs/logging.conf
|
84 |
+
```
|
85 |
+
|
86 |
+
Execute inference:
|
87 |
+
|
88 |
+
```
|
89 |
+
python -m monai.bundle run evaluating \
|
90 |
+
--meta_file configs/metadata.json \
|
91 |
+
--config_file configs/inference.json \
|
92 |
+
--logging_file configs/logging.conf
|
93 |
+
```
|
94 |
+
|
95 |
+
Export checkpoint to TorchScript file:
|
96 |
+
|
97 |
+
```
|
98 |
+
python -m monai.bundle ckpt_export network_def \
|
99 |
+
--filepath models/model.ts \
|
100 |
+
--ckpt_file models/model.pt \
|
101 |
+
--meta_file configs/metadata.json \
|
102 |
+
--config_file configs/inference.json
|
103 |
+
```
|
104 |
+
|
105 |
+
Export checkpoint to onnx file, which has been tested on pytorch 1.12.0:
|
106 |
+
|
107 |
+
```
|
108 |
+
python scripts/export_to_onnx.py --model models/model.pt --outpath models/model.onnx
|
109 |
+
```
|
110 |
+
|
111 |
+
Export TensorRT float16 model from the onnx model:
|
112 |
+
|
113 |
+
```
|
114 |
+
trtexec --onnx=models/model.onnx --saveEngine=models/model.trt --fp16 \
|
115 |
+
--minShapes=INPUT__0:1x3x256x256 \
|
116 |
+
--optShapes=INPUT__0:16x3x256x256 \
|
117 |
+
--maxShapes=INPUT__0:32x3x256x256 \
|
118 |
+
--shapes=INPUT__0:8x3x256x256
|
119 |
+
```
|
120 |
+
This command need TensorRT with correct CUDA installed in the environment. For the detail of installing TensorRT, please refer to [this link](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html).
|
121 |
+
|
122 |
+
# References
|
123 |
+
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
124 |
+
|
125 |
+
# License
|
126 |
+
Copyright (c) MONAI Consortium
|
127 |
+
|
128 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
129 |
+
you may not use this file except in compliance with the License.
|
130 |
+
You may obtain a copy of the License at
|
131 |
+
|
132 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
133 |
+
|
134 |
+
Unless required by applicable law or agreed to in writing, software
|
135 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
136 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
137 |
+
See the License for the specific language governing permissions and
|
138 |
+
limitations under the License.
|
scripts/data_process.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
train_rate = 0.6
|
6 |
+
val_rate = 0.2
|
7 |
+
test_rate = 0.2
|
8 |
+
|
9 |
+
|
10 |
+
def save_json(content, path, filename):
|
11 |
+
if not os.path.exists(path):
|
12 |
+
os.makedirs(path, exist_ok=True)
|
13 |
+
dst_file_name = os.path.join(path, filename)
|
14 |
+
with open(dst_file_name, "w+") as fp:
|
15 |
+
json.dump(content, fp, indent=4, separators=(",", ":"))
|
16 |
+
|
17 |
+
|
18 |
+
def generate_labels(data_path, output_path):
|
19 |
+
"""
|
20 |
+
Loading a model by name.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
data_path: path to classification dataset, which must contain `inbody` and `outbody` directories.
|
24 |
+
output_path: path to save labels
|
25 |
+
"""
|
26 |
+
|
27 |
+
data_list = [os.path.join(root, x) for root, _, filenames in os.walk(data_path) for x in filenames if "jpg" in x]
|
28 |
+
label_list = [int("outbody" in os.path.basename(os.path.dirname(x))) for x in data_list]
|
29 |
+
data_label_json = [{"image": x, "label": y} for x, y in zip(data_list, label_list)]
|
30 |
+
inbody_list = list(filter(lambda x: x["label"] == 0, data_label_json))
|
31 |
+
outbody_list = list(filter(lambda x: not (x["label"] == 0), data_label_json))
|
32 |
+
inbody_train_len = int(len(inbody_list) * train_rate)
|
33 |
+
outbody_train_len = int(len(outbody_list) * train_rate)
|
34 |
+
inbody_val_len = int(len(inbody_list) * (train_rate + val_rate))
|
35 |
+
outbody_val_len = int(len(outbody_list) * (train_rate + val_rate))
|
36 |
+
inbody_train_list = inbody_list[:inbody_train_len]
|
37 |
+
outbody_train_list = outbody_list[:outbody_train_len]
|
38 |
+
inbody_val_list = inbody_list[inbody_train_len:inbody_val_len]
|
39 |
+
outbody_val_list = outbody_list[outbody_train_len:outbody_val_len]
|
40 |
+
inbody_test_list = inbody_list[inbody_val_len:]
|
41 |
+
outbody_test_list = outbody_list[outbody_val_len:]
|
42 |
+
train_list = inbody_train_list + outbody_train_list
|
43 |
+
val_list = inbody_val_list + outbody_val_list
|
44 |
+
test_list = inbody_test_list + outbody_test_list
|
45 |
+
save_json(train_list, out_path, "train.json")
|
46 |
+
save_json(val_list, out_path, "val.json")
|
47 |
+
save_json(test_list, out_path, "test.json")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
parser = argparse.ArgumentParser()
|
52 |
+
# path to downloaded dataset.
|
53 |
+
parser.add_argument(
|
54 |
+
"--datapath",
|
55 |
+
type=str,
|
56 |
+
default=r"/workspace/data/endoscopic_inbody_classification",
|
57 |
+
help="Input an existing model weight",
|
58 |
+
)
|
59 |
+
|
60 |
+
# path to save label json.
|
61 |
+
parser.add_argument(
|
62 |
+
"--outpath",
|
63 |
+
type=str,
|
64 |
+
default=r"/workspace/data/endoscopic_inbody_classification",
|
65 |
+
help="A path to save the onnx model.",
|
66 |
+
)
|
67 |
+
|
68 |
+
args = parser.parse_args()
|
69 |
+
data_path = args.datapath
|
70 |
+
out_path = args.outpath
|
71 |
+
|
72 |
+
if not os.path.exists(out_path):
|
73 |
+
os.makedirs(out_path, exist_ok=True)
|
74 |
+
generate_labels(data_path, out_path)
|