add the ONNX-TensorRT way of model conversion
Browse files- README.md +42 -0
- configs/inference_trt.json +10 -0
- configs/metadata.json +2 -1
- docs/README.md +42 -0
README.md
CHANGED
@@ -74,6 +74,33 @@ Accuracy was used for evaluating the performance of the model. This model achiev
|
|
74 |
#### Validation Accuracy
|
75 |
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
## MONAI Bundle Commands
|
78 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
79 |
|
@@ -115,6 +142,21 @@ The classification result of every images in `test.json` will be printed to the
|
|
115 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
116 |
```
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# References
|
119 |
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
120 |
|
|
|
74 |
#### Validation Accuracy
|
75 |
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
|
76 |
|
77 |
+
#### TensorRT speedup
|
78 |
+
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
79 |
+
|
80 |
+
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
81 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
82 |
+
| model computation | 6.50 | 9.23 | 2.78 | 2.31 | 0.70 | 2.34 | 2.81 | 4.00 |
|
83 |
+
| end2end | 23.54 | 23.78 | 7.37 | 7.14 | 0.99 | 3.19 | 3.30 | 3.33 |
|
84 |
+
|
85 |
+
Where:
|
86 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
87 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
88 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
89 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
90 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
91 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
92 |
+
|
93 |
+
Currently, this model can only be accelerated through the ONNX-TensorRT way and the Torch-TensorRT way will come soon.
|
94 |
+
|
95 |
+
This result is benchmarked under:
|
96 |
+
- TensorRT: 8.5.3+cuda11.8
|
97 |
+
- Torch-TensorRT Version: 1.4.0
|
98 |
+
- CPU Architecture: x86-64
|
99 |
+
- OS: ubuntu 20.04
|
100 |
+
- Python version:3.8.10
|
101 |
+
- CUDA version: 12.0
|
102 |
+
- GPU models and configuration: A100 80G
|
103 |
+
|
104 |
## MONAI Bundle Commands
|
105 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
106 |
|
|
|
142 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
143 |
```
|
144 |
|
145 |
+
#### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
|
146 |
+
|
147 |
+
```bash
|
148 |
+
python -m monai.bundle trt_export --net_id network_def \
|
149 |
+
--filepath models/model_trt.ts --ckpt_file models/model.pt \
|
150 |
+
--meta_file configs/metadata.json --config_file configs/inference.json \
|
151 |
+
--precision <fp32/fp16> --use_onnx "True" --use_trace "True"
|
152 |
+
```
|
153 |
+
|
154 |
+
#### Execute inference with the TensorRT model:
|
155 |
+
|
156 |
+
```
|
157 |
+
python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
|
158 |
+
```
|
159 |
+
|
160 |
# References
|
161 |
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
162 |
|
configs/inference_trt.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import os",
|
4 |
+
"$import json",
|
5 |
+
"$import torch_tensorrt"
|
6 |
+
],
|
7 |
+
"handlers#0#_disabled_": true,
|
8 |
+
"network_def": "$torch.jit.load(@bundle_root + '/models/model_trt.ts')",
|
9 |
+
"evaluator#amp": false
|
10 |
+
}
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.
|
4 |
"changelog": {
|
|
|
5 |
"0.3.9": "fix mgpu finalize issue",
|
6 |
"0.3.8": "enable deterministic training",
|
7 |
"0.3.7": "adapt to BundleWorkflow interface",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.0",
|
4 |
"changelog": {
|
5 |
+
"0.4.0": "add the ONNX-TensorRT way of model conversion",
|
6 |
"0.3.9": "fix mgpu finalize issue",
|
7 |
"0.3.8": "enable deterministic training",
|
8 |
"0.3.7": "adapt to BundleWorkflow interface",
|
docs/README.md
CHANGED
@@ -67,6 +67,33 @@ Accuracy was used for evaluating the performance of the model. This model achiev
|
|
67 |
#### Validation Accuracy
|
68 |
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
## MONAI Bundle Commands
|
71 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
72 |
|
@@ -108,6 +135,21 @@ The classification result of every images in `test.json` will be printed to the
|
|
108 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
109 |
```
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# References
|
112 |
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
113 |
|
|
|
67 |
#### Validation Accuracy
|
68 |
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
|
69 |
|
70 |
+
#### TensorRT speedup
|
71 |
+
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
72 |
+
|
73 |
+
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
74 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
75 |
+
| model computation | 6.50 | 9.23 | 2.78 | 2.31 | 0.70 | 2.34 | 2.81 | 4.00 |
|
76 |
+
| end2end | 23.54 | 23.78 | 7.37 | 7.14 | 0.99 | 3.19 | 3.30 | 3.33 |
|
77 |
+
|
78 |
+
Where:
|
79 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
80 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
81 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
82 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
83 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
84 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
85 |
+
|
86 |
+
Currently, this model can only be accelerated through the ONNX-TensorRT way and the Torch-TensorRT way will come soon.
|
87 |
+
|
88 |
+
This result is benchmarked under:
|
89 |
+
- TensorRT: 8.5.3+cuda11.8
|
90 |
+
- Torch-TensorRT Version: 1.4.0
|
91 |
+
- CPU Architecture: x86-64
|
92 |
+
- OS: ubuntu 20.04
|
93 |
+
- Python version:3.8.10
|
94 |
+
- CUDA version: 12.0
|
95 |
+
- GPU models and configuration: A100 80G
|
96 |
+
|
97 |
## MONAI Bundle Commands
|
98 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
99 |
|
|
|
135 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
136 |
```
|
137 |
|
138 |
+
#### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
|
139 |
+
|
140 |
+
```bash
|
141 |
+
python -m monai.bundle trt_export --net_id network_def \
|
142 |
+
--filepath models/model_trt.ts --ckpt_file models/model.pt \
|
143 |
+
--meta_file configs/metadata.json --config_file configs/inference.json \
|
144 |
+
--precision <fp32/fp16> --use_onnx "True" --use_trace "True"
|
145 |
+
```
|
146 |
+
|
147 |
+
#### Execute inference with the TensorRT model:
|
148 |
+
|
149 |
+
```
|
150 |
+
python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
|
151 |
+
```
|
152 |
+
|
153 |
# References
|
154 |
[1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
|
155 |
|