update the TensorRT part in the README file
Browse files- README.md +10 -2
- configs/metadata.json +2 -1
- docs/README.md +10 -2
README.md
CHANGED
@@ -47,20 +47,28 @@ IoU was used for evaluating the performance of the model. This model achieves a
|
|
47 |

|
48 |
|
49 |
#### TensorRT speedup
|
50 |
-
The `endoscopic_tool_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU
|
51 |
|
52 |
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
53 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
54 |
| model computation | 12.00 | 14.06 | 6.59 | 5.20 | 0.85 | 1.82 | 2.31 | 2.70 |
|
55 |
| end2end |170.04 | 172.20 | 155.26 | 155.57 | 0.99 | 1.10 | 1.09 | 1.11 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
This result is benchmarked under:
|
58 |
- TensorRT: 8.5.3+cuda11.8
|
59 |
- Torch-TensorRT Version: 1.4.0
|
60 |
- CPU Architecture: x86-64
|
61 |
- OS: ubuntu 20.04
|
62 |
- Python version:3.8.10
|
63 |
-
- CUDA version:
|
64 |
- GPU models and configuration: A100 80G
|
65 |
|
66 |
## MONAI Bundle Commands
|
|
|
47 |

|
48 |
|
49 |
#### TensorRT speedup
|
50 |
+
The `endoscopic_tool_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
51 |
|
52 |
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
53 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
54 |
| model computation | 12.00 | 14.06 | 6.59 | 5.20 | 0.85 | 1.82 | 2.31 | 2.70 |
|
55 |
| end2end |170.04 | 172.20 | 155.26 | 155.57 | 0.99 | 1.10 | 1.09 | 1.11 |
|
56 |
|
57 |
+
Where:
|
58 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
59 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
60 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
61 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
62 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
63 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
64 |
+
|
65 |
This result is benchmarked under:
|
66 |
- TensorRT: 8.5.3+cuda11.8
|
67 |
- Torch-TensorRT Version: 1.4.0
|
68 |
- CPU Architecture: x86-64
|
69 |
- OS: ubuntu 20.04
|
70 |
- Python version:3.8.10
|
71 |
+
- CUDA version: 12.0
|
72 |
- GPU models and configuration: A100 80G
|
73 |
|
74 |
## MONAI Bundle Commands
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.4.
|
4 |
"changelog": {
|
|
|
5 |
"0.4.7": "fix mgpu finalize issue",
|
6 |
"0.4.6": "enable deterministic training",
|
7 |
"0.4.5": "add the command of executing inference with TensorRT models",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.8",
|
4 |
"changelog": {
|
5 |
+
"0.4.8": "update the TensorRT part in the README file",
|
6 |
"0.4.7": "fix mgpu finalize issue",
|
7 |
"0.4.6": "enable deterministic training",
|
8 |
"0.4.5": "add the command of executing inference with TensorRT models",
|
docs/README.md
CHANGED
@@ -40,20 +40,28 @@ IoU was used for evaluating the performance of the model. This model achieves a
|
|
40 |

|
41 |
|
42 |
#### TensorRT speedup
|
43 |
-
The `endoscopic_tool_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU
|
44 |
|
45 |
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
47 |
| model computation | 12.00 | 14.06 | 6.59 | 5.20 | 0.85 | 1.82 | 2.31 | 2.70 |
|
48 |
| end2end |170.04 | 172.20 | 155.26 | 155.57 | 0.99 | 1.10 | 1.09 | 1.11 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
This result is benchmarked under:
|
51 |
- TensorRT: 8.5.3+cuda11.8
|
52 |
- Torch-TensorRT Version: 1.4.0
|
53 |
- CPU Architecture: x86-64
|
54 |
- OS: ubuntu 20.04
|
55 |
- Python version:3.8.10
|
56 |
-
- CUDA version:
|
57 |
- GPU models and configuration: A100 80G
|
58 |
|
59 |
## MONAI Bundle Commands
|
|
|
40 |

|
41 |
|
42 |
#### TensorRT speedup
|
43 |
+
The `endoscopic_tool_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
44 |
|
45 |
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
47 |
| model computation | 12.00 | 14.06 | 6.59 | 5.20 | 0.85 | 1.82 | 2.31 | 2.70 |
|
48 |
| end2end |170.04 | 172.20 | 155.26 | 155.57 | 0.99 | 1.10 | 1.09 | 1.11 |
|
49 |
|
50 |
+
Where:
|
51 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
52 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
53 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
54 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
55 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
56 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
57 |
+
|
58 |
This result is benchmarked under:
|
59 |
- TensorRT: 8.5.3+cuda11.8
|
60 |
- Torch-TensorRT Version: 1.4.0
|
61 |
- CPU Architecture: x86-64
|
62 |
- OS: ubuntu 20.04
|
63 |
- Python version:3.8.10
|
64 |
+
- CUDA version: 12.0
|
65 |
- GPU models and configuration: A100 80G
|
66 |
|
67 |
## MONAI Bundle Commands
|